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ABSTRACT

In this thesis, we investigate semi-cycles, boundedness, persistence of positive
solutions, and global asymptotic stability of the unique positive equilibrium of two
different systems of two nonlinear difference equations.

The first system is:

n ‘rn
-Tn+1:A+ Y ) yn+1:B+ , n=0,1,--
Yn—k Tn—k

with parameters A, B are positive real numbers, the initial conditions z;,y; are
arbitrary positive numbers for i = —k,—k+1,--- ,0 and k € Z+.

The second system is:

xn n
Topr = A+ g =B+ n=0,1,-
yn—k Tn—k

with parameters A > 0 and B > 0, the initial conditions x;, y; are arbitrary positive

numbers for i = —k,—k+1,--- ,0and k € ZF .
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1. PRELIMINARIES

1.1 Introduction

Difference equations and discrete dynamical systems have received attention from
researchers in particular mathematical model which studies problems in physics,
economics, engineering and biology. These equations and systems can help to de-
velop the theory of difference equations. Difference equations which may It difficult

to completely recognize the behavior of their solutions.

Recently, nonlinear difference equations and systems are of extensive interest|[3]
[8],[11],[27]].

Particularly, in 1998, Papaschinopoulos and Schinas [18] proved that any positive
solution of the following system of difference equations oscillates about the equilib-

rium:

n xn
xn—&—l :A+ y 3 yn+1:A+ ) n:0717"‘ (111)

Tn—p Yn—q

where A > 0 and p, g are positive integers. They proved that any positive solution
of (1.1.1) oscillates about the equilibrium (z,y) = (A+ 1, A+ 1), and if A > 0 and
at least one of p,q is an odd number (respectively, A > 1 and p, g are both even
numbers), then any positive solution of (1.1.1) is bounded. Moreover, they showed
that when A > 1 therefore the positive unique equilibrium of the system (1.1.1)
is globally asymptotic stable. Moreover, they considered system in the case that

A=0and p=q¢=1, and found that every solution of system (1.1.1) in this case is
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periodic of period 6 .

After that, in 2000 , Papaschinopoulos and Schinas [19] investigated the system:

Tp— n—
:L‘n-i-l:A—'— y17 yn+1:A+yx 17 TL:O,].,... (112)

where A is a positive constant and z_1, xg, y_1, Yo are positive numbers.They proved
that any positive solution of the system oscillates about the equilibrium (z,y) =
(A+1,A+1).

Moreover, that system (1.1.2)has been proved as having a periodic solution of pe-
riod two if A = 1, and that any positive solution of system (1.1.2) tends to the

equilibrium as n — oo.

Furthermore, they showed that if 0 < A < 1, then system (1.1.2) has unbounded
solutions. If A = 1, then every positive solution of (1.1.2) tends to a periodic solu-
tion of period two, and if A > 1 then the positive equilibrium (z,y) = (A+1,A+1)
of (1.1.2) is globally asymptotically stable.

Whereas Papaschinopoulos and Papadopoulos [17] studied, in 2002, the existence of

positive solutions of the equation:

Tn
Tp+1 :A+ y TL:O,]_,... (113)

fn—m

And they found both bounded and unbounded solutions of (1.1.3). They also inves-

tigated The difference equations of the following system:

Tn n
Tn+1 = A+ sy Yn41 =B+ Y ) n:()717"' (114)

ynfm xnfm

where m € {1,2,...}, and &, i1y X0, Yo Y—mads - - - Yo are positive con-
stants and A, B are positive real numbers. They proved that in case that A > 1
and B > 1, the solution of (1.1.4) is bounded and persists, and there will be a

unique positive equilibrium (Z, 7) of system (1.1.4) and that every positive solution
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of (1.1.4) tends to that unique positive equilibrium as n — oco. They could also
found unbounded solutions when 0 < A <1lor 0 < B < 1.
In 2004, Camouzis and Papaschinopoulos [4] had studied the persistence and bound-

edness of mentioned positive solutions of the following systems:

Tn Yn
Ln+1 :1+ ) Yn+1 :1+l' ) n:0,17... (115)
where x;,y; are positive numbers for ¢ = —m,—m + 1,...,0 and m is a positive

integer. Furthermore, they proved that (1.1.5) has an infinite number of positive
equilibrium solutions and that every positive solution converges to a positive equi-

librium solution (z,y) = (2,2) as n — oo.

In 2007,Y. Zhang et al. [27] investigated the system:

n—m Tn—m
Tnt1 :A—i_yx ) Yn+1 :A+ y ) n:0717"‘ (116)

with positive parameter A, the initial conditions z;,y; are positive real numbers for
t=—m,—m+1,...,0, and m is a positive integer. Zhang et al. proved that the
unique positive equilibrium of (1.1.6) is globally asymptotically stable for A > 1,
and the positive solution of system (1.1.6) is bounded and persists when A > 1,
they also found unbounded solutions of system (1.1.6) when 0 < A < 1, and showed
that for A = 1, if m is odd then any positive solution of (1.1.6) with prime period

two is of the form

b b b b
a(b7b)7 (Evm)7(b’b)’(b——1’b——l)7

where 1 < b # 2, however, if m is even then any positive solution of (1.1.6) with

prime period two takes the form

b b b b
7<b7b_1)7(b_17b)7(byb_1)7(b_1ab)7

where 1 < b # 2.
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While in 2013, the concept of the global asymptotic stability of positive equi-
librium and persistence and boundedness of positive solutions were studied by Q.

Zhang, Yang, and Liu [26] of the following system:

xn*m n—m
:En+1 :A‘I’ 5 yn+1:B+y N n:O,l,... (117)

Yn Tn

where A, B, x;,y; € (0,00) for i = —m,—m + 1,...,0 and m € Z*. They found
unbounded solutions for system (1.1.7) when A and B are less than one, and proved
that when A > 1 and B > 1 the positive solution of system (1.1.7) is bounded

and persists, and when A > 1 and B > 1 the positive equilibrium point (z,y) =

(AB—I AB—1
B-17 A-1

) is globally asymptotically stable.
A year later, the concept of global asymptotic behavior of the system including two

rational difference equation were demonstrated and studied by Q. Zhang et al [25]:

xn n
Tny1 = A+ ——, yn+1:B‘|’ky—’ n=01,... (1.1.8)

Zi:1 Yn—i Zizl Tp—i

where A, B, z;,y; are positive real numbers for ¢ = —k,—k+1,...,0 and k € Z™.
More precisely, Zhang et al. proved that if A > % and B > %, therefore each positive
solution of system (1.1.8) is bounded and persists. Moreover, they proved that every
positive solution converges to the positive equilibrium (z,y) as n — oo.

Finally, D. Zhang et al. [24] presented and studied the system

n— Tp—
xn-i-l:A—'_y ka yn+1:A+ k; n:0717"‘ (119)

n 'T’Vl

with considering parameters A > 0, the initial conditions x;, y; are arbitrary positive
real numbers for i = —k,—k+1,...,0 and k € Z*. The above mentioned scientists
investigated the asymptotic behavior of positive solutions of the system in the cases
0<A<1l,A=1and A > 1. When 0 < A < 1, they might discover unbounded
solutions of system (1.1.9), and they proved when A = 1 the system (1.1.9) can have
two periodic solutions, and every positive solution is bounded and persists. They
additionally show that the unique positive equilibrium point (z,79) = (A+1, A+ 1)
is a global attractor when A > 1.
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The semi cycle of the positive solutions of the system were being investigated
by Gumus [12] in 2018, and when A > 1 show that the unique positive equilibrium
point (z,7) = (A+ 1, A+ 1) is globally asymptotically stable.

In 2019, S. Abualrob and M. Aloqeili,[[2],[1]] investigated semi cycle , boundedness
and the persistence of solutions that are positive and the unique positive equilibrium
of the two different systems of the two nonlinear difference equation that are related
to global asymptotic stability.

the first system is:

Yn—k Tn—k

xn+1:A+ 5 yn+1:B+

n xn

n=01,... (1.1.10)

with considering parameters A > 0 and B > 0, the initial conditions z;,y; are
arbitrary positive numbers for i = —k,—k +1,...,0 and k € ZT.

The second system is:

Tn

U ) yn+1:A+

Tpy1 = A+
Yn—k Tn—k

n=01,... (1.1.11)

with parameters A > 0 and the initial conditions x;,y; are arbitrary positive num-
bers for i = —k,—k+1,...,0 and k € Z™.

Other associated difference equations and systems may be located in references
More details when considering the theory of difference equations have been supplied
in [[9],[10]]. Motivated by all the systems we previously mentioned, we introduce in

Chapter 2 the system

n xn
Tni1 = A+ i s Yne1 = B+ , n=0,1,...
Tn—k Ln—k

with positive parameters A and B, the initial conditions x;, y; are arbitrary positive
numbers for ¢ = -k, —k+1,...,0 and k € Z*.

In Chapter 3 , we introduce the system

T n
In+1:A+ ) yn+1:B+ Y ; TL:O,]_,...
Yn—k Tpn—k




1.1. INTRODUCTION 6

with positive parameters A and B, the initial conditions x;, y; are arbitrary positive
numbers for i = —k,—k+1,...,0 and k € Z". As a long way as we know, no work
has been reported in the literature on the dynamics of those system.

In Chapter 2, the semi-cycle of the system of the positive solutions of system (2.0.1)
is studied, when 0 < A < 1 and 0 < B < 1 we also find unbounded solutions of the
same system. When A > 1 and B > 1 we prove that the positive solutions of system
(2.0.1) are bounded and persist. Finally, we show that if A > 1 and B > 1 then the
unique positive equilibrium of system (2.0.1) is globally asymptotically stable.

Moreover, in Chapter 3 , we investigate system (3.0.1) via the method of semi-
cycle analysis , and then we assume some conditions to get unbounded solutions for
this system. We also prove that if A > 1 and B > 1 then every positive solutions of
system (3.0.1) are bounded and persist. Then, we show that when A > 1 and B > 1
the positive equilibrium point of system (3.0.1) is globally asymptotically stable.

We conclude each of these two chapters by numerical examples that illustrate the

our results.
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1.2 Basic Definitions and Results

In this part, we provide basic definitions and results that we’re about to use in the
following chapters. Consider the 2(k + 1) -dimensional dynamical system of the

following form:

Tp41 = f (xna Tp—1s++sLn—k;s Yn) Yn—1,- - - 7yn—k)
Yn+1 = 49 <$n7 Tn—1yyTn—ksYnsYn—1,--- 7ynfk) (121)
n=0,1,...

where f, g are continuously differentiable real valued functions. For example

e Ty
.iEn+1:A+y k, yn+1:B+ k, TL:O,L-“

n ‘%TL

Definition 1.1. (Equilibrium Point). A point (z,y) is said to be an equilibrium
point of system (1.2.1) if

(1.2.2)
and y=9¢(Z,2,...,2,9,9,...,7)
Example 1.1. Consider the system
e T
Tnt1 :A+y k” Yn+1 =B+ T k, n20,1,~-~
To find equilibrium point we solve f(z,y) = (Z,y) implies T = A + g = A+

1 and y=B+<=B+1,s0(z,5)=(A+1,B+1).
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Definition 1.2. (Stable, Unstable, Attracting, Asymptotically Stable and Globally
Asymptotically Stable Equilibrium Point). If (z,y) is an equilibrium point of (1.2.1)
then

1. (z,y) 1s said to be stable if for every € > 0 there exists & > 0 such that for every
initial condition (x;,y;),1 € {—k,—k +1,...,0} of HZ?}k (i, yi) — (f,g)H <0
implies that for alln > 0, || (zn, yn) — (Z,9)|| < €, where ||.|| is usual Euclidian norm
in R?. Otherwise, (z,y) is called unstable.

2. An equilibrium point (Z,y) is called attracting if there exists n > 0 such that

0

Z (@i 9:) — (2,9)

i=—k

< nimplies lim (z,,y,) = (Z,7) (1.2.3)
n—oo

3. (Z,y) is called a global attractor if in 2,n = oco.
4. An equilibrium point (Z,y) is called asymptotically stable if it is both stable and
attracting, and it is said to be globally asymptotically stable if it is both stable and

global attractor.

Definition 1.3. (Positive Solution). A pair of sequences of positive real numbers
{@n, yn ), that satisfies (1.2.1) is a positive solution of (1.2.1).

Definition 1.4. (Equilibrium Solution). If a positive solution of (1.2.1) is a pair of

constants (Z,y), then the solution is the equilibrium solution.

Definition 1.5. (Periodic Solution). A positive solution {x,,y,}>> , of (1.2.1)
is said to be periodic if there exists a positive integer m, such that for all n >

—k, (Tn, Yn) = (Tntms Ynsm)- m is called the period of the solution.

Definition 1.6. (Eventually Periodic Solution). A positive solution {z,,yn} - . of
(1.2.1) is said to be eventually periodic if there exist an integer | > —k and a positive
integer m, such that (T,11, Ynst1) = (Tntivm, Yntiem) for alln =0,1,... where m is

the period of the solution.
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Definition 1.7. (Bounded Solution). A positive solution {xp,yn} - , of (1.2.1) is
bounded and persists if there exist positive real numbers Py, Q1, Py and Qg such that
P <z, <Q and Py <y, < Qo forn > —k.

(e 9]

Definition 1.8. (Increasing and Decreasing Solution). A positive solution {z,, y,},_ .

of (1.2.1) is demonstrated to be increasing (respectively decreasing) if n > m, then

Ty > Ty and Yy, > Y (TEspectively T, < T, and y, < Ym) for alln > 1 and m > 1.

Definition 1.9. A series of consecutive expression {xy, ..., x.} (respectively {y;, ..., y.}),t >
—k, and r < oo is demonstrated to be a positive semi-cycle if x; > T (respectively

Yi > y),i €{t,... 1}, 21 < T (respectively y1 < Y), and X1 < T (Y1 < )

Definition 1.10. A series of consecutive expression {xy, ..., x,} (respectively {ys, ..., y-}),t >
—k, and r < oo is demonstrated to be a negative semi-cycle if v; < T (respectively

v <y),i €{t,...,r},x;_1 > T (respectively y,_1 > 7), and x.11 > T (Y1 > 7)

Definition 1.11. A series of consecutive expression {(x, y¢) ..., (T, yp)}, t > —k,
and r < oo is demonstrated to be a positive semi-cycle (respectively negative semi-
cycle) if both {xy,...,x.} and {ys, ..., y,} are positive semi-cycles (respectively neg-

ative semi-cycles).

Definition 1.12. A series of consecutive expression {(xy,y¢),..., (s, yr)}, and
t > —k, r < oo is demonstrated to be a positive semi-cycle (respectively negative

semi-cycle) with related to x, and negative semi-cycle(respectively positive semi-

cycle) with related to y, if {x,..., 2} is a positive semi-cycle (respectively nega-
tive semi-cycle) and {yi, ..., y.} is a negative semi-cycle (respectively positive semi-
cycle).

The first semi-cycle of a solution of (1.2.1) starts with the term (x_j,y_x), and
it’s positive (respectively negative) if x_p > T and y_ > y ( respectively v_p < T

and y_j, < 9)
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Definition 1.13. (Nonoscillatory Solution). A sequence x, (respectively y,) is
called nonoscillatory about T (respectively § ) if there exists N > —k such that
T, > T (respectively, .y, > y) or x, < T (respectively, y, < y) for alln > N.

o

o of system (1.2.1) is a nonoscillatory so-

We mention that a solution {x,,y,}
lution about (Z,y) if x, is nonoscillatory about T and y, is nonoscillatory about .

However, a solution {x,,y,},— . is called oscillatory if it is not nonoscillatory.

Definition 1.14. (Nonoscillatory Positive and Nonoscillatory negative Solutions).
A solution {xn, yn}or . of system (1.2.1) is a nonoscillatory positive (respectively
negative) solution about (Z,y) if there exists N > —k such that x,, > Z and y, >
(respectively x, < T and y, < y) for alln > N.

Definition 1.15. (Jacobian Matriz). The Jacobian Matriz is a matriz that takes
the partial derivatives of the linearization with respect to each of the sequence at the

equilibrium point.

Definition 1.16. (Linearized Form of (1.2.1) Let (Z,y) be an equilibrium point
of system (1.2.1) where f,g are continuously differentiable functions at (Z,y). The

linearized system of (1.2.1) concerning the point of equilibrium has the form:

Xn+1 - JXn

T . . .
where X, = (Tpy Tn-1, - Tnky Yns Yn1s- - - Ynk) and J is a Jacobian matriz of

system (1.10) concerning the point of equilibrium.

Theorem 1.1. [28] For the linearized system X1 = JX,,n=0,1,... of (1.2.1).
If all eigenvalues of the Jacobian matriz J about (Z,y) lie inside the open unit disk
Al < 1, then (z,7) is locally asymptotically stable. If one of them has a modulus

greater than one, then (Z,q) is unstable.
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Definition 1.17. (Limit Superior and Limit Inferior). Let {x,} be a sequence of
real numbers. The limit superior of {x,} , denoted by limsup {x,}, is defined by

limsup {2, } = lim [sup {im > n}] = inf fsup {zim > n})
n—o00 nz
The limit inferior of {x,}, denoted by liminf {z,}, is defined by

liminf {z,} = lim [inf{z,,;m > n}| = sup [inf {z,,; m > n}|
n—oo ’VLZO

Example 1.2. Consider the sequence {x,} = {0,1,0,1,...}. Then 3, = sup{x,,,m >

n} =1 and «, =inf{z,,,m>n} =0

Example 1.3. Consider the sequence {y,} = (—1)". Then 3, = sup{ym,, m > n} =
1 and o, = inf{y,,m >n} =—1

Definition 1.18. (Spectral Radius). Let M be any real n X n matriz, and assume
A1y Ag, ...y Ay are the eigenvalues of M. Then the spectral radius of M, denoted by
p(M), is given by:

p(M) = max {|\}

1<i<n

Theorem 1.2. [28] Let ||.|| be any matriz norm defined on the set of all real n x n
matrices (M) . Then for any matriz M € M,,

p(M) < |[A]
Definition 1.19. (Infinite Norm of a Matriz). Let M ba any matriz in M,,. The

infinite norm of M, denoted by || M|, is given by:

1<r<n

n
[M||oo = max Z ||
c=1



2. DYNAMICS OF THE SYSTEM
Xy =A+ 22 Yy =B+ 2%

Yn_Kr’ XN-K
In this chapter, we introduce the symmetrical system:
n xn
T = A+ Ly =B+ n=0,1,.. (2.0.1)
Yn—k Tp—k

with parameters A > 0 and B > 0, the initial conditions z;, y; are arbitrary positive
numbers for i = —k, —k+1,--- ,0 and k € ZT. We observe the dynamical behavior
of this system in the cases: When 0 < A < 1 and 0 < B < 1 and when A > 1
and B > 1, we additionally look at the behavior of the positive solutions of (2.0.1)
using the semi-cycle analysis method. Finally, we give some numerical examples

that supports the results in this chapter.

System (2.0.1) has the unique positive equilibrium (z,9) = (A + 1,B + 1)
since f(Z,y) = (Z,y) implies = = A+% =A+4+landyj=B+%2=B+1so0
(7,9) = (A+1,B+1).

There are two cases to be considered:

e Case 1: If A = B then system (2.0.1) turns into the symmetrical system

n Tn
.Z'n_t'_l:A—'—y_, yn+1:A+ s nzo,l,---
Yn—k Tn—k

with parameter A > 0, the initial conditions z;, y; are arbitrary positive num-
bers for i = —k,—k+1,--- ,0 and k € ZT, which was studied in [1].

e Case 2: We study the general case, which is a generalization of the study in

[1].
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2.1 Semi-cycle Analysis I

In this section, we have a look at the behavior of positive solutions of system (2.0.1)

by semi-cycle analysis method.

Theorem 2.1. Let {x,,y,}32 _,. be a solution of system (2.0.1). Then, both this
solution is non-oscillatory solution or it oscillates about the equilibrium (T,y) =
(A4 1, B+ 1) with semi-cycles such that if there exists a semi-cycle with at least k

terms, then each semi-cycle after that has at least k + 1 terms.

Proof. Assume {xp,yn}>>_, is a solution of system (2.0.1), and there exists an
integer ng > 0 such that (z,,,yy,) is the last term of a semi-cycle that has at least
k terms. Then, both

vy gkt 1y -0y Tng—1, Tng < 1+A< Tno+1

and

s Yng—kt 1y s Yng—15Yno < 1+ B < Yngt1
or

ey Tpg—kt 1y ooy Trg—15 Tng > L+ A > Xt
and

oy Yng—k+15 -+ Yng—15 Yng > 1+ B> Yno+1

o Casel: If ..., @pg—kt1s s Trg—1, Tnp < 1+A < g1 and ooy Yng— k15 -5 Yno—1, Yng <

14+ B < Yny+1, then

n wn
xn0+2:A+M>A+1andyn0+g:B+¢>B—l—l
yno—k+1 xno—k)-‘rl
yno+2 xno—l—Q
Tpgts =A+ ——>A+1and y,,13 =B + >B+1
yno—k+2 xng—k+2

n, - Tn, _
$n0+k:A+M>A+1andyn0+k:B+L“>B+1
ynofl xnofl
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ny xn
I‘n0+k+1:A+M>A+1andyn0+k+1:B+ﬂ>B+1

Yno Lng

hence, the semi-cycle beginning with (z,,41,Yn,+1) has at least k + 1 terms.
Now, assume the semi-cycle which begins with (2,11, yn,+1) has exactly k+1
terms, then the following semi-cycle will begin with (%1512, Yng+kt2) such
that

Tngt1s Tng+2s -y Tngtkt1 > L+ A > Tpgikrz a0 Yng115 Yng+2s - Yno+k+1 > 1+

B > ypytkio , then for i =1,2,3, ..k

Yno+k+1+i
Tpgrhiori = A+ ———— < A+1
Yno+1+i
and
LTng+k+1+i
Yno+kt2ti = B+ ————— < B+1

Tno+1+i
so, each semi-cycle after this point must have at least k + 1 terms.

Case 2: If ..., Tpy—ki1y ooy Tng—15 Tng > 1+A > Tpgr1 a0d oo, Yng—kt 1y o5 Yno—15 Yng =

1+ B > ypyt1, then forall e =2,3,....k+ 1

Ynog—1+4

Yno—k—1+i

and
Ynoii = B+ —0" By

Tng—k—1+i
hence, the semi-cycle beginning with (x,,41,yn,+1) has at least k + 1 terms.
Now, assume this semi-cycle has exactly k + 1 terms, then the following semi-
cycle will begins with (2,442, YUng+ks2) Such that T, 11, Tngt2, oy Trngrht1 <
L+ A < Zogrrre and Yngi1, Ungt2s s Ynprkt1 < 1+ B < Ypgyryo then for

i=1,3,...k

— At Yno+k+1+i

Tngtk+2+i >A+1

Yno+1-+i
and
Lno+k+1-+i
Ynothiozti = B+ ———" > B+1
Tno+1+i
so, each semi-cycle after this point must have at least k 4+ 1 terms.
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Theorem 2.2. System (2.0.1) has no nontrivial k-periodic solutions of period k

(not necessarily prime period k).

Proof. Assume system (2.0.1) has a k-periodic solution. Then (g, Yn—r) = (Tn, Yn)
for all n > 0, and so x4 :A—i—yy—’:k:A+1andyn+1:B—|—x‘”—ik:B+1,for all

n > 0. Thus, the solution (z,,y,) = (A+ 1, B + 1) is the equilibrium solution of
(2.0.1) ]

Theorem 2.3. All non-oscillatory solutions of System (2.0.1)have a tendency to
the equilibrium.(z,y) = (A+ 1, B + 1).

Proof. Assume that system (2.0.1) has a non-oscillatory solution say {x,, y,}5> ;.
Then via way of means of Theorem (2.1) the solution includes a single semi-cycle,
either this semi-cycle is positive or negative. Assume that the solution is of negative

semi-cycle. Then for all n > —k, (zp,yn) < (A+1,B + 1), so

Tni1 = A+ Un < A+ 1 implies v, < Yn_k
Yn—k
Ty, . .
Ynt1 = B+ < B+ 1 implies x,, < x,_p
Tn—k

A< . . <zrpp <z, <z, <A+1

and

B< .. <Yk <Yn <Y< B+1
which means that z,,,y, have k subsequences
{xnk}, {xnkﬂ}, T ,{Ink+(k—1)} and {ynk}, {ynk+1}, co 7{ynk+(/€—1)}

every subsequence is decreasing and bounded from below, so every one of them is

convergent, so for all = 0,1, ..., k — 1 there exist a;, 8; such that
lim zp1i = ; and lim yppy = Bi.
n—o0 n—oo

Thus
(060, 50)7 (041,51), Tty (Ofkflyﬁkfl)
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is a k-periodic solution of system (2.0.1), which contradicts Theorem (2.2) except

the solution is the trivial solution. So, the solution converges to the equilibrium. H

Theorem 2.4. Any increasing solution to system (2.0.1) is non-oscillatory positive

(the infinite semi-cycle in the solution is a positive semi-cycle).

Proof. Assume {z,, y, }>2_, is an increasing non-oscillatory solution to system (2.0.1).Then,

either A+1<ziand B+1<y,orax1 <A+1andy < B+ 1.

e Case I: If A+ 1 < z; and B+ 1 < gy, since the solution is increasing then
A+1 <z <z <3< ..and B+1<y <y <ys<.. sothe solution

has an infinite positive semi-cycle.

e Case 2: If r1y < A+ 1 and y; < B + 1, then we claim that the semi-cycle
containing (z1,y;) ends with (z;,y;) such that 1 <i < k+1.If i = k+ 2 then

x
$k+2=A+M<A+1andyk+2:B+ Moo B

Y1 1
imply that

Yrr1 < Y1 and zpy1 < 29

but £+ 1 > 1 which contradicts the fact that the solution is increasing, so any

increasing solution of system is non-oscillatory positive.
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Theorem 2.5. System (2.0.1)has no decreasing non-oscillatory solution.

Proof. Assume system (2.0.1) has a decreasing non-oscillatory solution say {x,, ¥, }5> .

As in proof of Theorem (2.4) the solution is either of the form
<3<z <zri<A+land .. <y3<yp <y < B+1
or there exists a positive integer ng > k + 1, such that
i S T2 S X1 <A+ 1<z, < Tpy-1...

and

o S Ynot2 S Ynot1 < B +1 < Yng < Yng—1---

where the positive semi-cycle ending with (z,,, ys,) will have at most 2k + 2 terms.
In each cases, the solution has an infinite negative semi-cycle which contradicts

Theorem (2.3). Hence, system (2.0.1) has no decreasing non-oscillatory solutions.
|

2.2 Semi-cycle Analysis I

In this section, we observe extra properties of qualitative behavior of positive so-
lutions of system (2.0.1) by semi-cycle analysis. Throughout this section, we carry
out semi-cycle analysis when x and y have semi-cycles of the specific types, that is,
positive (resp. negative) semi-cycle for x and negative (resp. positive) semi-cycle
for y, see definition(1.12) . We call the solution in this situation a solution with

specific semi-cycles.
Theorem 2.6. The following statements are true:
(a) Any solution to system (2.0.1) that is increasing with respect to x and decreasing

with respect to y is non-oscillatory positive with respect to x and non-oscillatory

negative with respect to y.
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(b) Any solution to system (2.0.1) that is decreasing with respect to x and increasing
with respect to y is non-oscillatory a negative semi-cycle with respect to x and

non-oscillatory positive with respect to y.

Proof. We prove statement (a). Assume {x,,y,}>° _, is an increasing solution with
respect to x and decreasing with respect to y to system (2.0.1). Then we have the

following cases:

(1) A+1 <z and B+ 1> y.
(2) A+1 <z and B+1<y.
(3) A+1>xand B+ 1> y.

(4) A+1>xand B+ 1 <y;.

e Case (1): if A+1 < xy and B+ 1 > y,, since the solution is increasing with
respect to x and decreasing with respect to y then A+ 1 < ) < 29 < 23 < ...
and B+ 1 > y; > yo > y3 > ..., so the solution has an infinite positive
semi-cycle with respect to x and an infinite negative semi-cycle with respect

to y.

e Case (2): if A+1 < x; and B+1 < g, then we can conclude that the solution
has an infinite positive semi-cycle with respect to x. As for y, we claim that
the semi-cycle containing y; ends with y; such that 1 < < k+1. If i = k42,
then

imply that the solution of (2.0.1) has an infinite positive semi-cycle with re-

spect to x and infinite positive semi-cycle with respect to y.

e Case (3): if A+1 > 27 and B+1 > ¥, then we can conclude that the solution

has an infinite negative semi-cycle with respect to y. As for z, we claim that
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the semi-cycle containing x; ends with x; such that 1 < < k+1. If i = k+2,

then

Yr+1
%N
imply that the solution of (2.0.1) has an infinite negative semi-cycle with

< A+1

Tpez = A+

respect to x and infinite negative semi-cycle with respect to y.

e Case (4): if A+ 1 > 2y and B+ 1 < ¥, then we claim that the semi-cycle
containing (z1,y;) ends with (z;,y;) such that 1 <i < k+1. If i = k+2, then

T
xk+2:A+M<A+1andyk+2:B+ bl

Y1 T1

>B+1

imply that the solution of (2.0.1) has an infinite negative semi-cycle with

respect to x and infinite positive semi-cycle with respect to y.

Now we need prove statement (b). Assume {x,,y,}°° , is an increasing solution
with respect to y and decreasing with respect to  to system (2.0.1). Then we have

the following cases:

(1) A+1>x;and B+ 1 < y.
(2) A+1 <z and B+1<y;.
(3) A+1>x;and B+ 12> y.

(4) A+1 <z and B+1>y;.

e Case (1):iif A+ 1> x; and B+ 1 < y, since the solution is increasing with
respect to y and decreasing with respect to x then B+ 1 < y; <ys < y3 < ...
and A+ 1 > x1 > 9 > x3 > ... , so the solution has an infinite positive
semi-cycle with respect to y and an infinite negative semi-cycle with respect

to x.
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e Case (2): if A+1 < x; and B+1 < g, then we can conclude that the solution
has an infinite positive semi-cycle with respect to y. As for x, we claim that
the semi-cycle consist of a 1 ends with z; such that 1 < < k+1. Ifi = k+2,

then
Yr+1
(75

imply that the solution of (2.0.1) has an infinite positive semi-cycle with re-

xk+2:A+ >A+1

spect to y and infinite positive semi-cycle with respect to x.

e Case (3): if A+1 > x; and B+1 > ¥, then we can conclude that the solution
has an infinite negative semi-cycle with respect to . As for y, we claim that
the semi-cycle consist of a y; ends with y; such that 1 <i < k+1. If i = k+2,

then
Lh+1

T

yk+2:B+ <B+]_

imply that the solution of (2.0.1) has an infinite negative semi-cycle with

respect to y and infinite negative semi-cycle with respect to x.

e Case (4): if A+ 1 < z; and B+ 1 > y;, then we claim that the semi-cycle
consist of a (x1,y;) ends with (z;,y;) such that 1 <i < k+ 1. If i = k + 2,
then

T
xk+2:A+M>A+landyk+2:B+ bl

Y1 T1

mean that the solution of (2.0.1) has an infinite negative semi-cycle with re-

<B+1

spect to y and infinite positive semi-cycle with respect to . Hence, any in-
creasing solution with respect to x and decreasing with respect to y to system
(2.0.1) is non-oscillatory positive with respect to = and negative with respect

to y.
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Theorem 2.7. System (2.0.1) has no non-oscillatory solutions.

Proof. Assume that system (2.0.1) has a non-oscillatory solution, say {x,, y,}2 _,
which has an infinite negative semi-cycle, and assume this semi-cycle starts with
(xn,yn) satisfies x,, > A+ 1landy, < B+1lorxz, <A+1andy, > B+1 forall
n > N. Then

Case (1):

Tpy1 = A+ yynk > A+ 1 implies y,, > y,,_x for n > max{1, N — 1}
and

Yny1 = B+ In < B+ 1 implies z,, < z,,_y for n > max{1, N — 1}

Tn—k

so for all n > max{1, N}
Tpfp > Ty > Ty > . > A+ 1

and

B+1>yn+k2yn>ynfk2m23

implies the solution is bounded, which means that {x,}, {y,} have k subsequences
{Znk > {Znks1s s {Tnkr -1 } A0 {Ynk b {Ynkt15 - {¥nk+(e—1) } such that each subse-
quence of {x,} is decreasing and bounded from below and each subsequence of {y,, }
is increasing and bounded from above, so each one of all subsequences is convergent,
so for all = 0,1, ...,k — 1 there exist v;, d; such that

lim 2pps = v and im yupqs = 6;
Thus,

(70:00)5 (71, 01), oy (Yr—1, Op—1)

is a k-periodic solution of system (2.0.1), which contradicts the previous theorem
(2.2) until the solution is the trivial solution. Hence, the solution converges to the
equilibrium, which is a contradiction, due to the solution is diverging from the equi-

librium. Hence, system (2.0.1) has no non-oscillatory solutions which have positive
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semi-cycles with respect to 2 and negative semi-cycles with respect to y (or negative

with respect to x and positive with respect to y).

Case (2):

Tpi1 = A+ yynk < A+ 1 implies y,, < yp—x for n > max{1l, N — 1}
and

Yni1 = B+ n > B+ 1 implies z,, > x,_ for n > max{1, N — 1}

Tn—k

so for n > max{1, N}
A+l>zep >, 2 x> ... > A

and

yn—k>yn>yn+k>sz+1

implies the solution is bounded, which means that {x,}, {y,} have k subsequences
{Znr}s {Znks1s o {Tnkr -1 } A0 {Yni b5 {Ynkt15 o> {¥nk+—1) } such that each subse-
quence of {z,} is increasing and bounded from above and each subsequence of {y,, }
is decreasing and bounded from below, so each one of all subsequences is convergent,
so for all = 0,1, ...,k — 1 there exist ;, d; such that

lim Zpps = v and im yppq = 0



2.2. SEMI-CYCLE ANALYSIS 11 23

Thus,
(707 50)7 (717 51)7 ooy (%—1, 5k—1)

is a k-periodic solution of system (2.0.1), which contradicts the previous theorem
(2.2) until the solution is the trivial solution. Hence, the solution converges to
the equilibrium, which is a contradiction, due to the solution is diverging from
the equilibrium. Hence, system (2.0.1) has no non-oscillatory solutions which have
positive semi-cycles with respect to x and negative semi-cycles with respect to y (or

negative with respect to z and positive with respect to y). [ |

Corollary 2.7.1. If A > 1 and B > 1, then system (2.0.1) has no increasing (resp.
decreasing) solution with respect to x and decreasing (resp. increasing) with respect

toy.

Proof. Assume that system (2.0.1) has an increasing solution with respect to x and
decreasing with respect to y, or a decreasing solution with respect to x and increasing
with respect to y. Then from theorem (2.6). the solution is non-oscillatory and
departs from the equilibrium (A + 1, B + 1) which contradicts theorem (2.7) and
theorem (2.3) |
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23 The Case0 < A<landO< B<1

In this section, we study the asymptotic behavior of system (2.0.1) when 0 < A <
1 and 0 < B < 1. System (2.0.1) can have unbounded solutions given specific

conditions.

Theorem 2.8. Suppose that 0 < A < 1 and 0 < B < 1 . Let ¢ = max{A, B}
and {x,, yn 122 be an arbitrary positive solution of (2.0.1). Then the following

statements are true:

(a) If k is odd and 0 < x9py,—1 < 1,29, > ﬁ,ygm_l > %_C,O < Yo < 1 form =
1-k 3—k : . . .
S %550 0, then lim Xy, = 00, lim Yo,y = 00, lim g, 11 = A, lim y,, = B
n—oo n—oo n—oo n—oo
(b) If k is odd and 0 < x9y, < 1,x9m_1 > l%c,ygm > 1%0,0 < Yom—1 < 1 for
m = 1;—’“, %, 0,0, then lim x9,,1 = 0o, lim yo, = 00, lim x5, = A,
n—oo n—oo n—oo

lim yo,41 = B
n—oo

Proof. e If kisodd and 0 < x9,,—1 < 1, 29,, > l—ic,ygm_l > %_C,O < Yom < 1 for

_1-k 3—k
m = 5 g ...,O, then

1
D<= A+ c At — cA41—c<A+1-A=1
Y-k Y-k
Zo 1
h1=B+—>B+z0>10> "—
T_p 1—c

1
o >A+y >y > —

Y—k41 1—-c¢

LEQZA—l—

O<yp=B+ - <B4

T—k+1 T k41

<B+1—-c<B+1-B=1

By induction, we get that forn = 1,2, ...

1 1
0< o1 <19y >— Yon1>—,0< 1y, <1
1—c 1—c¢
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soforl>1
Yai—1 Loj—2
ry=A+———>A+yy1=A+B+ > A+ B+ x99
Y2i—(k+1) Lol—k—2
_ Ty
cu=A+ - S Ay =AY B+ 4 S AL B oy,
Yal—(k+1) Tyl—k—2
_ Ty
— A+ B+ S AL By s =2442B+ 1 S 941 9B 4 ay
Yai—k—3 Tal—k—4
also

gy > 3A 4+ 3B + xg_¢

so forallr=1,2, ...

Topl > T(A + B) + Tori—or

if n = rl, then as r — oo and lim x5, = 0o. Considering (2.0.1) and taking
n— o0

the limit on both sides of the equation

Ton

Yont1 = B +
Ton—k

we get lim yo,411 = 00 since 0 < x99, < 1 for all n = 0,1, ... Now, take the
n—oo

limit on both sides of the equation

Yon
Yon—k

Topt1 = A+

we obtain lim wg,,7 = A since 0 < y, < 1 for all n. Now, take the limit on
n—oo

both sides of the equation

Ton+1
Yoo = B+ ———
Lon—k+1

to get lim ys, = B, which completes the proof of (a)
n—0o0

1
1—c?

If £is odd and 0 < x9,, < 1,291 > ﬁ,yzm > 0 < yom1 < 1 for

_ 1-k 3—k
m = 5 g ...,O, then

1

= A+ s Ay >y > ——
Y-k l—c

1
O<y=B+ 2 <«Bt—— <Btl-c<B+1-B=1
T_ T_p
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O<ap=A+ -2 <Ay cA+l-c<A+1-A=1
Y—k+1 Y—k+1
1
Yo = B + o >B4+x >x >
T—k+1 —cC

By induction, we have for all n = 1,2, ...

1 1
0< Loy < 1,1’27171 > —, Yoy > —,0 < Yop—1 < 1
1—c¢ 1—c¢
soforl>1
Yai Ta1-1
Ty = A+ >A4+yy=A+B+ > A+ B+ 294
Yoi—k Tol—k—1
Yal Ta1—1
Typ1 = A+ >A4+yy=A+B+ >A+ B+ x4
Yal—k TAl—k—1
— A+ B+ U S 9A L Biyy s> 24428+ 0 S 941 9Bty s
Yai—k—2 T4l—k—3

also, rg1 > 3A+ 3B + xg_5. So for all r =1,2, ...
Tori41 > T(A + B) + Top—(2r—1)

if n = rl, then as r — oco,n — oo and lim w9, = oco. Considering (2.0.1)
n—oo

and taking the limit on both sides of the equation

Ton+1
Yoo = B+ ———
Ton—k+1

we get lim yo, = 00 since 0 < w9, 11 < 1 for all n = 0,1, ... Now, take the
n—oo

limit on both sides of the equation

Lon

Yon+1 = B+
Lon—k

we obtain lim y9,,1 = B since 0 < x5, < 1 for all n. Now, take the limit on
n—oo

both sides of the equation

Yon+1
Topto = A+ =
Yon—k+1

to get lim x9, = A, which completes the proof.
n—oo
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24 The Case A >1and B > 1

In this section, we study the boundedness and persistence of the positive solutions
of system (2.0.1) when A > 1 and B > 1. We also prove that if A >1 and B > 1
then the unique positive equilibrium of (2.0.1) is globally asymptotically stable.

Lemma 2.9. Given vj, where j = —k,—k +1,...,k + 1. Then the solution of the

second order linear difference equation

Upto = avU, +b,n>k,a#1

TR PO
(Y =17 — |a
k+21 k a—1 1—a

b ] b
Vgg2i41 = | Vg1 + —— |a +

is of the form

a—1 1—a

foralll >0
Proof.

Uky2 = avg+Db,

Up+3 = QUgy1 + 0,

Vhpda = QUpyo + b= a’v, +ab+ b,

V45 — QUgy3 +b= (121}k+1 + ab + b,

Vkig = QUgpiq+0= vy, + a’b + ab + b,

Vks7r = QUgpas+b= agka + a®b+ ab + b,

hence, for all [ > 0

b b
Vpsor = a'vp + 0+ a7+ L+ 1) = [+ —— |d' +
a—1 1—a
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b b

k42141 = @' Vg1 + b(al_l +aT? L+ )= {(vwn+— al +
a—1 1—a
n

which completes the proof.
Theorem 2.10. Suppose that A > 1 and B > 1. Then every positive solution of
system (2.0.1) is bounded and persists. In fact, for all | > 0,

[
(A+D4B\ [ 1 (A+1)AB

<
A<x’f+2l—<x’“+ - 48 J\aB) T AaB_1

and l
A+ 1AB 1 A+ 1AB
A < Tpiar < <xk+1 * : 1-— ,iB ) <AB> " %

simalarly,

!
(B+1AB\ [ 1 (B+1)AB
<
B<yk+2l_<yk+ 1— AB ARB T AB —1
and

l
(B+1AB\ [ 1 (B+1)AB
< AT
B <o = (y’““ " as J\aB) T a1

Proof. Assume A > 1, B > 1 and {z,,y,}°>_, is a positive solution of system

(2.0.1). Since z,, >0 and y, > 0 for all n > —k, (2.0.1) implies that

Tp>A>1ly,>B>1foraln>1 (2.4.1)
Now, using (2.0.1) and (2.4.1) we get that for all n > 2
Yn—1 1
xn:A—{_ <A+§yn—1
Yn—k=1 (2.4.2)
Tn—1 1
Yn = B + < B+ -z,
Tpn—k-1 A
Let v, w, be the solution of the system
(2.4.3)

1 1
Up = A+§wn,1,wn = B—l-Z’Un,l, for all n 2 l{}—|—1
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such that
'U,L':l'i,wi:yi,izl,Q,...,k—l—l (244)
now, we use induction to prove that
Ty < Up,y Yp < Wy, foralln >k +2 (2.4.5)
Suppose that (2.4.5) is true for n = m > k + 2. Then from (2.4.2), we get
1 1
Tmy1 < A+ Eym <A+ Ewm = Um+1
(2.4.6)
1 1
Ym1 < B+ Z$m < B+ va = Wm+1
Therefore, (2.4.5)is true. From (2.4.3) and (2.4.4), we have
1
’U,H_g = A + ]_ —I— E’Un, (247)
1
Wht2 +1+ T5Y ( )
n>k (2.4.9)

for simplicity, let a = 75, b= A+ 1 and c¢= B+ 1. Then (2.4.7) becomes

AB>

Upio = U, + b, Wpio =aw, +c¢, n >k

Now, using Lemma(2.9), for all [ > 0

b b
! -1 -2 l
= +b + +...+1)= + +
Vktol = A T, (a a ) (xk 1>a 1

Upyorp1 = a1 + (a7 +ad P4 L+ 1) = <xk+1 + _> at +




24. THE CASEA>1AND B >1 30

since A>1,B>1and a=45,b=A+1 Thenforalll>0

Ukl(m+(A+1MB>(]y+(A+DAB

1—-AB AB AB -1
(2.4.10)
!
B N (A+1)AB 1 N (A+1)AB
Ukt2i+1 = | Tht1 1_— AB AR TAB—-1
Then, from (2.4.1), (2.0.1) and(2.4.10), for all { > 0
!
(A+1)AB 1 (A+1)AB
<
A<x“”—’c%+ 1—aB J\aB) " AB-1
A+04aB\ [ 1\ (A+1)4B
+ +
A<x“““550%”+ 1- AB ><AB>‘+_Z§iT_
And since A>1,B>1and a= 45,b=A+1. Then foralll >0
I
_(,  BEDABY (1) (B+1AB
Oheat =\ T )\ 4B AB—1
(2.4.11)

l
(B+1)AB 1 N (B+1)AB
1— AB AB AB -1

Wri21+1 = (ykJrl +

Then, from (2.4.1), (2.0.1) and(2.4.11), for all { > 0

l
(B+DABY (1), (B+1)AB
1— AB AB AB—1

B < ypyo < (?/k +

l
(B+DABY( 1\, (B+1)AB
1— AB AB AB —1

B < ypqo41 < (yk-H +

The proof is complete L
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Theorem 2.11. If A > 1 and B > 1. Then every positive solution of system (2.0.1)
converges to the equilibrium (z,y) = (A+1,B+ 1) as n — oo.

Proof. Let {x,,y,}>° . be an arbitrary positive solution of (2.0.1), and let

up = lim supx,, ;= lim infzx,
n—oo n—oo

ug = lim supy,, Il = lim infy,
n—o0 n—o0
Now, system (2.0.1) implies that
l l
<A+ 2 4y <B+ B L >A+ 2, >By L (2.4.12)
lg ll Ug Uy
from (2.4.12) we get uily < Aly + up and uyle > w1 B + 13
then
BU1 -+ ll S u112 S Alz + Usg (2413)
AUQ + l2 < UQll < Bll + uq (2414)
from (2.4.13) we get
and (2.4.14) implies
—Bll — Up S —AUQ - lg (2416)

from (2.4.15) and (2.4.16) we get
Bu1+l1—Bl1—u1 SAZ2+U2—Au2—l2

and
(B—=1)(u1 —l1) +(A—=1)(ug —15) <0
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but A>1land B>1so0A—1>0and B—1>0, also u; — l1,us — [ > 0. Hence
u1—11:Oandu2—l2:0
so u; = Iy and ug = ly. Now use (2.4.12) to get

B+1§12:U2§B+1aHdA+1§11:U1SA+1

hence
11:u1:A+1andl2:u2:B+1
SO
limz,=lL1=uyu=A+1and limy,=L=u=B+1
n—oo n—oo
which completes the proof. [ |
A—
Lemma 2.12. [fA>1and 0 <e< m where k € Zt, then
(17(k+12)e)(A+1) <L
Proof. A A
1 -1 —1
0<e< implies 0 < (kK 4+ 1)e < ——
€ (k+1)A+11mp1es (k4 1)e 151
SO y
-1 2
1—(k+1)e>1-— =
(k+1)e A+l A+l
that is A
1 +1 2
< implies ———— < A+1
—(ht e = 2 MM T e =0T
and so
2

=T DIA+]) ~*

The proof is complete. n
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Theorem 2.13. If A > 1 and B > 1, then the unique positive equilibrium (Z,y) =
(A+1,B+1) of system (2.0.1) is locally asymptotically stable.

Proof. System (2.0.1) can be formulated as a system of first order recurrence equa-

tions as follows:

k+1)

1 2 ( —
Wy, = T, Wy = Tp—1, -+, Wy = Tp—k
o e (2.4.17)
Uy, = Yn,Vyp = Yn—1,---, Uy = Yn—k
— (o] 2 (k+1) 1 2 (k+1\T : :
Let Z,, = (w), w2, ...;wy v 02 . v, )", Then the linearized system of system

(2.0.1) associated with (2.4.17) about the equilibrium point (z,9) = (A+1,B + 1)

is

Zn+1 = JZn
where
(1) A4~
wn+1 ’Uglk+l)
2 1
o |l
(k+1) (k)
Wn
Un+1 B+ Kim
2
U1(1+)1 U’Szl)
k+1
Y o

and J is the Jacobian matrix.

J(2k+2)><(2k+2): (Dwgll)ZTH_l Dwgbk+1)Zn+l Dv7(11>Zn+1 DUT(LkJrl)Zn_;r_l)
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so the Jacobian matrix will be of the following form

0 0 -0 0 g5 0 0 35
1 0--0 0 0 0--0 0
0 1--0 0 0 0 0 0
J 0 0 1 0 0 0 0 0
(2k+2)x (2k+2) = -
o5 0 0 =5 0 0 0 0
0 0 00 1 0 0 0
0 0 0 1 0 0
0 0--0 0 0 0--1 0

Let A1, Ag, ..., Aog12 be the eigenvalues of J. Define D = diag(dy,ds, ..., ds12) be a

diagonal matrix such that

dl :dk+2:1, dmde+1+m:1—me, m:2,3,,k‘—{—1

choose € > 0 such that 0 < e < min{ (Afl‘)_(iﬂ), (B+?)_(11c+1)}' Now,
d 0 0 0
0 do 0 -~ 0
Doksoyxi@r+2y = | 0 0 ds 0
S 0
0 0 0 - dopgo

0 1—2 -+ 0
0 1—(k+1)e 0 0

0 1—2¢

0 0 -0 0 0 0 - 0 1—(k+1)e
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so for all m =2,3,...,k + 1, by Lemma (2.12)
(E+1)(A-1) A+1-A+1 2

1-— >1—(k+1)e>1— = = >0
me= (k+1)e (k+1)(A+1) A+1 A+1
so for all m,1 — me > 0, hence D is invertible. Now,
d -1 d
0 0O --- 0 0 BLHkolﬂ 0o --- 0 B_Jrlld%l+2
“L 0 - 0 0 0 0 -~ 0 0
0 0 --- dl;_ﬂ 0 0
-1
DIDgiiopxorny = | L de o ... ¢ =L
A+l dy A+ sy
0 0 0 0 e 0 0
0 0 --- 0 0 0 0 ... %re2 0

d2k+1

Now, we need to show that the sum of the absolute value of entries of every row is
much less than one, on the way to find the infinite norm of DJD™!. Since € > 0 so

1 —me>1— (m+ 1)e, that is, dp, > dy41, for all m. So

d d d
Rl A ey |
dy dy dok+1
1 d T 1 1
For gaas v Bide, = 71 T o B
_ 1 1
= Bl T 0=G)a(BLD)
1 1 1
< 1—(k+1)e B+1 + (1—(k+l)e)%B+l)
< 2
(kD)) (B+1)
< 1
1 drro 1 diy2 D ST B
For 7575~ + a7 dor A T AS)o@AT

SN S S —
1—(k+1)e A+1 (1—(k+1)e)%A+1)

2
(1—(k+1)e)(A+1)

1

NN A




24. THE CASEA>1AND B >1 36

Since J has the same eigenvalue as DJD™!. Then,
p(J) = maz{| i [} < ||DJD™" |

but

1

L 1 d2 d3 di+1
HDJD*lHoo _ ) B+l (1—(1+I<:)5)(B+1)’1d17 a2 Tdy 0\
aa T (A—(1+k)e)(A+1)

So the modulus of each eigenvalue of J is much less than one. Hence, the unique
equilibrium point (z,y) = (A+ 1, B+ 1) of system (2.0.1) is locally asymptotically
stable. u

Theorem 2.14. [f A > 1 and B > 1, then the unique positive equilibrium (Z,y) =
(A+1,B+1) of system (2.0.1) is globally asymptotically stable.

Proof. Using theorem (2.13) we conclude that the equilibrium (z,79) = (A+1, B+1)
of system (2.0.1) is locally asymptotically stable, but Theorem (2.11) implies that
this equilibrium is a global attractor. Thus, the unique positive equilibrium (z, y) =

(A+1,B+1) of system (2.0.1) is globally asymptotically stable. [ |
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2.5 Numerical Examples

In this section, we give some numerical examples that represent different cases of
dynamical behavior of solutions of (2.0.1) the use of MATLAB to illustrate the

results we had in the previous sections.

Example 2.1. Consider the following system of two difference equations:

Tpy1 = A+ yn, Ynty1 = B + xn, n=0,1--- (2.5.1)

Yn—5 Tn—5

with A = 0.2, B = 0.8, and the initial conditions x_5 = 0.7,2_4 = 9.1,x_3 =
02,2 9=922_1=03,20 =10,y 5 =04,y 4, =103,y 3 =05,y o =93, y_1 =
0.3,y0 = 11.2. Then the solution of system (2.5.1) is unbounded since 0 < A < 1
and 0 < B < 1 and the initial conditions in Theorem (2.8) are satisfying. The
unique positive equilibrium point (zZ,y) = (1.2,1.8) is not globally asymptotically
stable (see Figure 1.1, Theorem (2.8)).

Heration number (1)

Fig. 2.1: The graph of a solution of system (2.5.1) with A =0.2 and B = 0.8
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Example 2.2. Consider system (2.5.1) with A = 4, B = 2.5, and the initial con-
ditions x_5 = 25,24 = 3.7,x_3 = 15,29 = 0.7,2_y = 03,20 = 04,y_5 =
22,y_4 =33,y 3 =12y 0 =03,y_1 = 02,90 = 0.9. Since A > 1 and B > 1,
the solution of system (2.5.1) is bounded and persists (see Theorem (2.9)), and the
unique positive equilibrium (z,y) = (5,3.5) is globally asymptotically stable (see
Figure 1.2, Theorem (2.14)).

Fig. 2.2: The graph of a solution of system (2.5.1) with A =4 and B =2.5
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Example 2.3. Consider the following system of two difference equations:

tn = A+ g =B+ n=0,1,-- (2.5.2)

)
Yn—1a Tp—a

with A = 3, B = 4, and the initial conditions x_4, = 0.8, x_3 =13, 2_9s=12,2_; =
21,00 =12,y 4 =15,y 3 =23,y 2 =0.3,y_1 = 0.5,y9 = 0.7. Then the solution
of system (2.5.2) Then the unique positive equilibrium (z,y) = (4,5) is globally
asymptotically stable since A > 1 and B > 1 (see Theorem (2.14)), and the solution
of system (2.5.2)is bounded and persists (see Figure 1.3, Theorem (2.9)). In this

example k£ = 4 is even, while in Example 1.2, £ = 5 is odd, but in both cases we

have the same conclusion.

L 1 1

Meration number (n)

Fig. 2.3: The graph of a solution of system (2.5.2) with A =3 and B =4



3. DYNAMICS OF THE SYSTEM

XN _ Y
Voo Yn+1 =B+ 5

XNy =A+

In this chapter, we introduce the dynamical system:

iL‘n+1:A+ mna yn+1:B+ Un , n=0,1,--- (301)

Yn—k Tn—k

with parameters A > 0 and B > 0, the initial conditions x;, y; are arbitrary positive
numbers for ¢ = —k,—k+1,--- ,0 and k € Z* . We study the dynamical behavior
of this system in the cases: case (1): 0 < A < 1,0 < B < 1 case (2): A > 1,
B > 1. Moreover we also investigate the behavior of the positive solutions of (3.0.1)
using the semi-cycle analysis method. Finally, we give some numerical examples
that illustrate the results in this chapter.

AB—1 AB-1
B-1°’ A-1

System (3.0.1) has the unique positive equilibrium (z, ) = (
T=A+2, y =B+ % implies that

) since

SO

hence, we find

SO
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and p AB
7 1 1
reAr =AY T T o
. 7 B-1 AB-1
I By

AB—-1 AB -1

@)= (LA
3.1 Semi-cycle Analysis I

In this section, we examine the behavior of positive solutions of system (3.0.1) via

semi-cycle analysis method.

Theorem 3.1. Let {z,,yn}°2 . be a solution of system (3.0.1). Then, either this
solution is non-oscillatory solution or it oscillates about the equilibrium (Z,y) =
(%, %) with semi-cycles such that if there exists a semi-cycle with at least k

terms, then every semi-cycle after that has at least k + 1 terms.

Proof. Assume {z,,y,}>° . is a solution of system (3.0.1), and there exists an
integer ng > 0 such that (z,,, yn,) is the last term of a semi-cycle that has at least

k terms. Then, either

AB —1
ooy Tpg— k1 ooy Tg—15 Tng < 51 < Tpgt1
and
AB -1
vy Yng—k+15 -0y Ung—15 YUng < A—1 S Yno+1
or
AB —1
vers Trg—ka41y -y Tng—15 Tng > B_1 > Tng+1
and
AB —1

vy Yng—k+15 -0y Yng—15 YUng Z A—1 > Yno+1
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AB-1

o Casel: If ..., @pg ki1, ooy Tng—1, Tnp < v

< Tng+1 and vy YUng—k+15 -5 Yno—15 Yng <

% < Yno+15 then
L1t AB—1 A—1 A—1 AB-1
Tt =A% AT T AB—1 T B-1_ B-1
and
Ynos1 AB—1 B-1 B—-1 AB-1
= B4 Jnotl _B _
Unotz = B+ A—1 AB—1 A Ry
Tpo1o AB—1 A—1 A—1 AB-1
n :A o+ IA _
Tro+3 +yn0,k+2 B—1 AB—1 tB_1 B_1
and
Yngs2 AB—1 B—1 B—-1 AB-1
Ynots =B A1 AB—1 PVt A-1= a-1
Tk AB—1 A—1 A—1 AB-1
ok = A Tt A _
Troth = A+ =" B_1AB_1 “"B_1~ B_1
and
Yno+k—1 AB—-1 B-1 B—-1 AB-1
Ynotk = 5+ = — TATaB—1 T A1 A=
A AB—1 A—1 A—1 AB-1
" — A o+ — A _
Trotkt1 = A+ = - B_1AB-1 " B_-1~ B_-1
and
Yngth AB—1 B—1 B-1 AB-1
Ynotke1 = B4 7 A-14AB-1 "Vt A-1~- A_1
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hence, the semi-cycle beginning with (z,,41,Yn,+1) has at least k + 1 terms.
Now, assume the semi-cycle which begins with (2,11, yn,+1) has exactly k+1
terms, then the following semi-cycle will begin with (%,,1x+2, Yng+kt2) such
that

AB -1

Tng+1s Trg+2s -+ Tno+k+1 = 51 > Tngtk+2

and
AB -1
Ynot+1s Yno+2s o> Yno+k+1 = A1 > Yno+k+25

then for i =1,2,3,..,k

n p= A TR oA =A =
otk - Yno+1+i + B—-1 AB—-1 +B—1 B-1
and

Yno+k+1+4 AB—-1 B—-1 B—-1 AB —1
B ~ B _
Yo+t + Tng+1+i * A-1 AB—-1 +A—l A—1

so, each semi-cycle after this point must have at least k + 1 terms.

. AB—1
Case 2: Tt ..., Tng—kt1s s Trg—1, Tng = 1 > T AN oo, Yng ki 15 ooy Yrig—15 Ynp =

ABL > 401, then forall i =23, ... k+1

A—-1
n, z:A 0—<A = A =
Tt = AN S AT BT ap—1 " TB-1” B-1
and
o — 1+ AB—-1 B—-1 B -1 AB -1
Ynosi = B+ 2= By B+ _

Trg— 14 A-1 AB—1 ~ T A-1 A-1
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hence, the semi-cycle beginning with (z,,41,Yn,+1) has at least k + 1 terms.
Now, assume this semi-cycle has exactly k& + 1 terms, then the following semi-
cycle will begin with (2, 1r+2, Yne+rr2) such that

AB -1
B-1

Tng+1 Tng+25 -+ Tno+k+1 < < Tnog+k+2

and
AB -1
Ynot1s Ynot2s oo Ynothtl < 7 S Ynothe2

then for i =1,2,....k

Tnog+k+1+i AB—-1 A-1 A-1 AB —1
n f= A4 T S 4 =A =
Tk A Y B-1ap-1 “TB-1TB-1
and

Yno+k+1+i AB—-1 B—-1 B—1 AB —1
Yno vkt " Tno+1+i + A—1 AB -1 +A—1 A—1

so, every semi-cycle after this point must have at least k + 1 terms. The proof

is complete.
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3.2 The Case0< A< landO< B<1

In this section, we study the asymptotic behavior of the positive solutions of system
(3.0.1) when 0 < A < 1 and 0 < B < 1. System (3.0.1) can have unbounded

solutions given certain conditions.

Theorem 3.2. Suppose that 0 < A < 1 and 0 < B < 1 . Let {x,,y,} be an

arbitrary positive solution of (3.0.1). Then the following statements are true:

1 1
(a) ]fi—ok <1-A, xyTOk > —Band y_py1, .., Y0 > 755 T—kt1s - To < 1. Then
xn<1,yn>ﬁ and xz, — A,y, = 0

(b) ]f%’k <1-0B, ;i—ok > ﬁ —Aand Y _gi1, Yo < 1 T gi1, .y To > ﬁ. Then
yn<1,xn>$ and x, — 00,y, — B

Proof. ° Ify% <1-A, ;’Tok > ﬁ—B and y_ji1, ..., Yo > ﬁ, T fg1y ooy T < 1.
Then
Zo
rn=A+—<A+1-A=1
Y—k
Yo 1 1
—B+ L~y —— _B=—"_
e 1—A

15

$2:A+ < A+

Y—k+1 Y—k+1
n 1 1 1 1
>B+ — > B >
PP By P i B g gy

T2

<A4+1-A=1

Yo = B+

$3:A—|— < A+

Y—k+2 Y—k+2
Yo 1 1 1 1

>B+ —- > B >
PP By P i B g gy

<A4+1-A=1

ys = B+

1
T = A+ A S < Ar1-A=1
Yo Yo
" 1 1 1 1
=B4+*~>B+——+—>18 >
Yer1 =54 1 An 1A 1-a
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Yn
Yns1 = B+ > B+ y,
Tn—k

implies lim y, = oo, lim z, = A.
n—oo n—oo

1 1
o If xyTOk < 1—B, ym__ok > 1B — A and Yekt1y - Yo < 1 T_ft1,---y Lo > 1B Then

i 1 1
A+ LA A
n=At 2 AY TR 1-B
Yo
yy=B+-2<B+1-B=1
Tk
T 1 1
Ty = A+ >A+ —— A+ >
2 Y 1— By_jut 1-B~ 1-B
=B+ -2 <B+ <B+1-B=1
T_f+1 T—k+1
To 1 1 1 1
r3 = A+ > A4+ —— > A+ >
’ Yokro 1= By_jsa 1-B~ 1-B
y=B+ -2 By <B+1-B=1
T—f+2 Tft2
T 1 1 1
=A4+—<A4+—>—>A >
e = At S AT T T T 1T T 1-B

1
=B+ <Bt+—<B+1-B=1
Zo Zo

L
> A+,

Tp4+1 = A+
Yn—k

implies lim z, = oo, lim ¥y, = B.
n—oo n—oo

which completes the proof.
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3.3 The Case A>1 and B > 1

In this section, we study the boundedness and persistence of the positive solutions
of system (3.0.1) when A > 1 and B > 1, we additionally show that if A > 1
and B > 1 then the unique positive equilibrium of (3.0.1) is globally asymptotically
stable.

Theorem 3.3. [17] Suppose that A > 1, B > 1. Then each positive solution {x,, y,}
of (3.0.1) is bounded and persists. In particular, for i =k + 2,k +3,....,3k + 3 and
[ >0, every positive solution of (3.0.1) satisfies

1 AB AB
A<z < (E)l (Qikﬂ — 1) +

B — B-1

1 AB AB (3.3.1)
BSyk+z§(Z)l(yk+1—A_l> TA—T
n>k+ 1.

Proof. Let {x,,y,} be arbitrary positive solution of (3.0.1). From (3.0.1) it is obvi-

ous that

A<z, B<y, n=>1 (3.3.2)

Now, using (3.0.1)and (3.3.2) we get that for all n > 2

n— 1
In:A+ ot §A+_$n—17
Yn—k—1 B
n— 1
=B+ < Bty (3.3.3)
Tp—k—1 A
n>k+1.
Let v,,, w, be the solution of the system
1 1
Upe1 = A+ =v,, Wpp1 = B+ —w,, foralln >k+1. (3.3.4)

B A
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such that
V; = T4, W; =Y, 1= —]{Z, —k + 1, ceey O, 1, ceey k+1 (335>
now, we use induction to prove that
Suppose that (3.3.6) is true for n = m > k + 2. Then from (3.3.3) we get
1 1
Tm41 S A + Exm S A + Evm = Um+1,
1 1
Ym+1 S B+ Zym S B + Zwm = Wm+1-
Therefore (3.3.6) is true. For simplicity, let a = %, b=A,d=DBand c= %. Then
(3.3.4) becomes
Upi1 = U, + b, Wy =cw, +d, n>k
implies that
Vgt = @ Vg1 + b, Wpy = CWryq + d
1—a 1—c
sinceA>1,B>1,a= %,b =A,d=Bandc= %. Then fori = k+2,k+3, ..., 3k+3
and [ > 0 implies
1 AB AB
A< < (=) —
1 AB AB (3.3.7)
B < < (=)t —
_yk+l_(A) (yk:—H A—1>+A—1’
n>k-+1.
The proof is complete. [ |
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Theorem 3.4. Suppose that A > 1, B > 1. Then the positive equilibrium
(7,7) = AB—-1 AB-1
CYE\TBoT A

of (2.0.1) is locally asymptotically stable.

Proof. System (3.0.1) may be formulated as a system of first order recurrence equa-

tions as follows:

wh =z, w0 =2y, ., wEY =2,
1 , . (3.3.8)
Uy, = Yn, Uy, = Yn—-1, "'7?]7(7, 1) = Yn—k
Let Z, = (w},w?, ..., Wt vlv? v,(LkH))T. Then the linearized system of system
(3.0.1) associated with (3.3.8) about the equilibrium point (z,7) = (4252, 48-1) is
Zn+1 =JZ,
where
A _I_ ynik
wT(Ll-i)-l Tn
2
wﬁll
: Tp—k+1
(k+1)
T
Za= 0 = 4
Un+1 B + Y
e
n+1 Yn
k+1
U’EL+1 : Yn—k+1
Yn—k

and J is the Jacobian matrix.

J(2k+2)><(2k+2): (Dwg)Z”"‘l DwSLkJrl)Zn_',l DU7(11>Zn+1 D,U%kJrl)Zn—‘rl)
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so the Jacobian matrix will be of the following form

1 0 =z
¥ y?
1 0 0 0 0 0
0 O 0
Jok12)x (2k42) = 5 1 0
2z
0O --- 0 0 1 0
O ---0 0 0 ---1 0

Let Ai, Ag, ..., Aapyo be the eigenvalues of J. Define D = diag(dy,ds, ..., dog12) be a

diagonal matrix such that dy = dy1o =1, disx = dppayorr =1—me, 1 <m <k

7=y | (

and € = min {%, % (1 — =], % 1— izg_ > } Clearly, D is invertible. Computing

DJD™!, we obtain

ladit 0 0 0o - 0 Fidog
dodyt - 0 0 0 0 0
_ 0 - dpady! 0 0 0 0
DJD™ = ] -1 1 -1
0 z_Qdk+2dk+1 Edk+2dk+2
0 0 dk+3d;;i2
0 - 0 0 0 oo dopsadyy 0

The following two chains of inequalities
dpg1 > dp > -+ >doy >0, dopyo > dopyr >+ > dpgz >0

imply that
dgdfl < 1,d3d51 <1, ,dk+1dlzl <1,
diysdipy < 1 dpradiys <10 doppadogyy < 1.

Furthermore,
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di j—1 z -1
T+ pdidy ., = 7_1_ d2k+2
- *+ 70k
1 T
R e i)
= 1, __z
o Y + @2(5515
— 1, 73
- it
g2
72
= 1

] 1 Y, 1 (]
dk+2 + - dk+2dk+2 7 + ﬁdkﬂ ~ + m

It is well known that J has the same eigenvalues as DJD™!, we obtain that

d
b2 <1.

p(J) = maz{| i [} < |[DJD ™o
but

di -1, & 7 -1 ~1 —1 1 1
Tldl + g_z2d1d2k+27 dk-i—ldk 7dk+3dk+2a ey d2k+2d2k+17 d2d1 7} <1

||DJD_1||00: Y drya g— g -1
z dk+2 + gz_2dk+2dk+1

So the modulus of every eigenvalue of J is less than one. Hence, the unique equi-

librium point (z,y) = (ABB_’ll, AAB_’11> of system (3.0.1) is locally asymptotically

stable. [ |

Theorem 3.5. [17] If A > 1 and B > 1, then every positive solution of system

(AB—l AB-1
B—-1'’ A-1

(3.0.1) converges to the equilibrium (Z,y) = ) as n — oo.

Proof. From (3.3.1)we have

L, = lim supx,, [ lim infzx,,

Ly = lim supy,, Il = lim infy,,
n—oo n—oo

where [;, L; € (0,00),7 = 1,2. Now, system (3.0.1) implies that

L L
L1§A+—1, L2§B+—2>
Iy [
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I Iy
W >A+— [y >B+—.
12 A+ L’ 2 2 b+ .
Which can be written as
Lhly < Aly+ Ly,  Lely < Bly + Lo,
lWLo > ALy + 1y, l3L1 > BLi+1s.
implies
BLy+1y <Ly < Aly+ Ly, ALy +1; <IliLy < Bly + Ly
From which we have

Li(B—1)<I(A—1), Ly(A—1)<L(B-1) (3.3.10)

Since A > 1 and B > 1 and from (3.3.10) imply that LiLs < l;ls from which it
follows that

LiLs = 1115 (3.3.11)
We claim that
Li =1, Ly=1,. (3.3.12)

Suppose on contrary that l; < L;. Then from (3.3.11)we have LyLy = l1ls < Lqly
and so Ly < ly, which is a contradiction. So L; = [;. Similarly, we can prove that

Ly = l5. Therefore, (3.3.12) are true. From (3.0.1)and (3.3.12) we conclude that
n—oo

lim z, =z and lim y, =y
n—oo

where (x,y) is the unique positive equilibrium of (3.0.1). This completes the proof

of the theorem.

Theorem 3.6. If A > 1 and B > 1, then the unique positive equilibrium (T,q) =

(AB—l AB—1
B-17 A-1

) of system (3.0.1) is globally asymptotically stable.

AB-1 AB—I)
B—-1’ A-1

of system (3.0.1) is locally asymptotically stable, but Theorem (3.5) implies that

Proof. Using theorem (3.4) we conclude that the equilibrium (z,y) = (

this equilibrium is a global attractor. Thus, the unique positive equilibrium (z,y) =

(ABfl AB-—1
B-1° A-1

) of system (3.0.1) is globally asymptotically stable. [
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3.4 Numerical Examples

In this section, we give some numerical examples that represent different cases of
dynamical behavior of solutions of (2.0.1) the use of MATLAB to illustrate the

results we had in the previous sections.

Example 3.1. Consider the following system of two difference equations:

Tpy1 = A+ mn’ Ynty1 = B + In , n=0,1,--- (3.4.1)

n—>»s Tn—5

with A = 0.3, B = 0.5, and the initial conditions x_5 = 0.7,2_4 = 9.1,x_3 =
0.5,r_9=92,2 1 =03,20=10,y 5 =03,y 4 =113,y 3 =05,y o =93,y_1 =
0.2,y0 = 11.9. Then the solution of system (3.4.1) is unbounded since 0 < A < 1
and 0 < B < 1 and the initial conditions in Theorem (3.2) are satisfying and the
unique positive equilibrium point (z,y) = (1.7,1.21) is not globally asymptotically
stable (see Figure 1.1, Theorem (3.2)).
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Heration number (n)

Fig. 3.1: The graph of a solution of system (3.4.1) with A =0.3 and B =0.5
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Example 3.2. Consider system (3.4.1) with A = 4, B = 2.5, and the initial con-
ditions x_5 = 35,04 = 4.7,x_3 = 25,29 = 09,2y = 03,29 = 0.5,y_5 =
33, y_4 =44,y 3 =22,y o =04y1 =05y = 0.7 Since A >1and B > 1,
the solution of system (3.4.1) is bounded and persists (see Theorem (3.3)), and the
unique positive equilibrium point (z,y) = (6,3) is globally asymptotically stable
(see Figure 1.2, Theorem (3.6)).

Fig. 3.2: The graph of a solution of system (3.4.1) with A =4 and B = 2.5
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Example 3.3. Consider the following system of two difference equations:

Tt = A+ "y =B+ n=0,1,-- (3.4.2)

Yn—1a Tp—a

with A = 3, B = 4, and the initial conditions z_4 = 0.9,2_3 =252 o =2, 01 =
1.1, 20 = 0.7,y_4 = 33,y_3 = 2,y_o = 0.4,y_1 = 0.3,y = 0.9. Then the unique
positive equilibrium point (Z,y) = (3.7,5.5) is globally asymptotically stable since
A >1and B > 1 (see Theorem (3.6)), and the solution of system (3.4.2)is bounded
and persists (see Figure 1.3, Theorem (3.3)). In this example k = 4 is even, while

in Example 1.2, £ =5 is odd, but in both cases we have the same conclusion.

Heration number (n)

Fig. 3.3: The graph of a solution of system (3.4.2) with A =3 and B =4



CONCLUSION

In this research, we solved an open problem proposed in [1] by Abualrob,
S.,Aloqeili, M. We expanded the work on system (1.1.11) to a system with different
parameters and investigated its dynamical behavior. We also introduced the sym-
metrical system of two rational difference equations (3.0.1) and studied the global

behavior of its positive solutions.

o7



FUTURE WORK

Our research can be expanded into more complicated related systems. The
study of systems (3.0.1), (1.1.1) and (1.1.6) can be extended to systems with distinct

parameters. Now, we will give some open problems that can be investigated next.

Problem 1. Investigate the dynamical behavior of the system of two difference

equations

Tapi = A+ =B+ n=0,1,-- (3.4.3)
Tn—k Yn—k

with parameters A > 0 and B > 0, the initial conditions x;, y; are arbitrary positive
numbers for : = -k, —k+1,--- Oand k€ Z1 .

Problem 2. Investigate the dynamical behavior of the system

tan = A+ Iy =B+ =01, (3.4.4)

Tn Yn

with parameters A > 0 and B > 0, the initial conditions x;, y; are arbitrary positive
numbers for i = —k,—k+1,--- ,0and k € ZF .

Problem 3. Investigate the dynamical behavior of the system of two nonlinear

difference equations
p .I'p
Tppr = A+ 2k BT 0 (3.4.5)
with parameters A > 0 and B > 0, the initial conditions x;, y; are arbitrary positive
numbers for i = —k,—k+1,--- ,0and k € ZF .

Problem 4. Investigate the dynamical behavior of the system

Toit = A+ QJnfk’ Yns1 = B + yn—k’ n=0,1,--- (3.4.6)

n xn

let A>1and B<1lor A< 1and B > 1, the initial conditions x;,y; are arbitrary
positive numbers for i = -k, —k+1,--- ,0and k € Z7.

o8
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