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ABSTRACT

In this thesis, we investigate semi-cycles, boundedness, persistence of positive

solutions, and global asymptotic stability of the unique positive equilibrium of two

different systems of two nonlinear difference equations.

The first system is:

xn+1 = A+
yn
yn−k

, yn+1 = B +
xn
xn−k

, n = 0, 1, · · ·

with parameters A,B are positive real numbers, the initial conditions xi, yi are

arbitrary positive numbers for i = −k,−k + 1, · · · , 0 and k ∈ Z+.

The second system is:

xn+1 = A+
xn
yn−k

, yn+1 = B +
yn
xn−k

, n = 0, 1, · · ·

with parameters A > 0 and B > 0, the initial conditions xi, yi are arbitrary positive

numbers for i = −k,−k + 1, · · · , 0 and k ∈ Z+ .
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1. PRELIMINARIES

1.1 Introduction

Difference equations and discrete dynamical systems have received attention from

researchers in particular mathematical model which studies problems in physics,

economics, engineering and biology. These equations and systems can help to de-

velop the theory of difference equations. Difference equations which may It difficult

to completely recognize the behavior of their solutions.

Recently, nonlinear difference equations and systems are of extensive interest[[3]

[8],[11],[27]].

Particularly, in 1998, Papaschinopoulos and Schinas [18] proved that any positive

solution of the following system of difference equations oscillates about the equilib-

rium:

xn+1 = A+
yn
xn−p

, yn+1 = A+
xn
yn−q

, n = 0, 1, . . . (1.1.1)

where A > 0 and p, q are positive integers. They proved that any positive solution

of (1.1.1) oscillates about the equilibrium (x̄, ȳ) = (A+ 1, A+ 1), and if A > 0 and

at least one of p, q is an odd number (respectively, A > 1 and p, q are both even

numbers), then any positive solution of (1.1.1) is bounded. Moreover, they showed

that when A > 1 therefore the positive unique equilibrium of the system (1.1.1)

is globally asymptotic stable. Moreover, they considered system in the case that

A = 0 and p = q = 1, and found that every solution of system (1.1.1) in this case is
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periodic of period 6 .

After that, in 2000 , Papaschinopoulos and Schinas [19] investigated the system:

xn+1 = A+
xn−1

yn
, yn+1 = A+

yn−1

xn
, n = 0, 1, . . . (1.1.2)

where A is a positive constant and x−1, x0, y−1, y0 are positive numbers.They proved

that any positive solution of the system oscillates about the equilibrium (x̄, ȳ) =

(A+ 1, A+ 1).

Moreover, that system (1.1.2)has been proved as having a periodic solution of pe-

riod two if A = 1, and that any positive solution of system (1.1.2) tends to the

equilibrium as n→∞.

Furthermore, they showed that if 0 < A < 1, then system (1.1.2) has unbounded

solutions. If A = 1, then every positive solution of (1.1.2) tends to a periodic solu-

tion of period two, and if A > 1 then the positive equilibrium (x̄, ȳ) = (A+ 1, A+ 1)

of (1.1.2) is globally asymptotically stable.

Whereas Papaschinopoulos and Papadopoulos [17] studied, in 2002, the existence of

positive solutions of the equation:

xn+1 = A+
xn
xn−m

, n = 0, 1, . . . (1.1.3)

And they found both bounded and unbounded solutions of (1.1.3). They also inves-

tigated The difference equations of the following system:

xn+1 = A+
xn
yn−m

, yn+1 = B +
yn
xn−m

, n = 0, 1, . . . (1.1.4)

where m ∈ {1, 2, . . .}, and x−m, x−m+1, . . . , x0, y−m, y−m+1, . . . , y0 are positive con-

stants and A,B are positive real numbers. They proved that in case that A > 1

and B > 1, the solution of (1.1.4) is bounded and persists, and there will be a

unique positive equilibrium (x̄, ȳ) of system (1.1.4) and that every positive solution
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of (1.1.4) tends to that unique positive equilibrium as n → ∞. They could also

found unbounded solutions when 0 < A < 1 or 0 < B < 1.

In 2004, Camouzis and Papaschinopoulos [4] had studied the persistence and bound-

edness of mentioned positive solutions of the following systems:

xn+1 = 1 +
xn
yn−m

, yn+1 = 1 +
yn
xn−m

, n = 0, 1, . . . (1.1.5)

where xi, yi are positive numbers for i = −m,−m + 1, . . . , 0 and m is a positive

integer. Furthermore, they proved that (1.1.5) has an infinite number of positive

equilibrium solutions and that every positive solution converges to a positive equi-

librium solution (x̄, ȳ) = (2, 2) as n→∞.

In 2007, Y . Zhang et al. [27] investigated the system:

xn+1 = A+
yn−m
xn

, yn+1 = A+
xn−m
yn

, n = 0, 1, . . . (1.1.6)

with positive parameter A, the initial conditions xi, yi are positive real numbers for

i = −m,−m + 1, . . . , 0, and m is a positive integer. Zhang et al. proved that the

unique positive equilibrium of (1.1.6) is globally asymptotically stable for A > 1,

and the positive solution of system (1.1.6) is bounded and persists when A ≥ 1,

they also found unbounded solutions of system (1.1.6) when 0 < A < 1, and showed

that for A = 1, if m is odd then any positive solution of (1.1.6) with prime period

two is of the form

· · · , (b, b),
(

b

b− 1
,

b

b− 1

)
, (b, b),

(
b

b− 1
,

b

b− 1

)
, . . .

where 1 < b 6= 2, however, if m is even then any positive solution of (1.1.6) with

prime period two takes the form

· · · ,
(
b,

b

b− 1

)
,

(
b

b− 1
, b

)
,

(
b,

b

b− 1

)
,

(
b

b− 1
, b

)
, . . .

where 1 < b 6= 2.
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While in 2013, the concept of the global asymptotic stability of positive equi-

librium and persistence and boundedness of positive solutions were studied by Q.

Zhang, Yang, and Liu [26] of the following system:

xn+1 = A+
xn−m
yn

, yn+1 = B +
yn−m
xn

, n = 0, 1, . . . (1.1.7)

where A,B, xi, yi ∈ (0,∞) for i = −m,−m + 1, . . . , 0 and m ∈ Z+. They found

unbounded solutions for system (1.1.7) when A and B are less than one, and proved

that when A ≥ 1 and B ≥ 1 the positive solution of system (1.1.7) is bounded

and persists, and when A > 1 and B > 1 the positive equilibrium point (x̄, ȳ) =(
AB−1
B−1

, AB−1
A−1

)
is globally asymptotically stable.

A year later, the concept of global asymptotic behavior of the system including two

rational difference equation were demonstrated and studied by Q. Zhang et al [25]:

xn+1 = A+
xn∑k

i=1 yn−i
, yn+1 = B +

yn∑k
i=1 xn−i

, n = 0, 1, . . . (1.1.8)

where A,B, xi, yi are positive real numbers for i = −k,−k + 1, . . . , 0 and k ∈ Z+.

More precisely, Zhang et al. proved that if A > 1
k

and B > 1
k
, therefore each positive

solution of system (1.1.8) is bounded and persists. Moreover, they proved that every

positive solution converges to the positive equilibrium (x̄, ȳ) as n→∞.

Finally, D. Zhang et al. [24] presented and studied the system

xn+1 = A+
yn−k
yn

, yn+1 = A+
xn−k
xn

, n = 0, 1, . . . (1.1.9)

with considering parameters A > 0, the initial conditions xi, yi are arbitrary positive

real numbers for i = −k,−k+ 1, . . . , 0 and k ∈ Z+. The above mentioned scientists

investigated the asymptotic behavior of positive solutions of the system in the cases

0 < A < 1, A = 1 and A > 1. When 0 < A < 1, they might discover unbounded

solutions of system (1.1.9), and they proved when A = 1 the system (1.1.9) can have

two periodic solutions, and every positive solution is bounded and persists. They

additionally show that the unique positive equilibrium point (x̄, ȳ) = (A+ 1, A+ 1)

is a global attractor when A > 1.
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The semi cycle of the positive solutions of the system were being investigated

by Gumus [12] in 2018, and when A > 1 show that the unique positive equilibrium

point (x̄, ȳ) = (A+ 1, A+ 1) is globally asymptotically stable.

In 2019, S. Abualrob and M. Aloqeili,[[2],[1]] investigated semi cycle , boundedness

and the persistence of solutions that are positive and the unique positive equilibrium

of the two different systems of the two nonlinear difference equation that are related

to global asymptotic stability.

the first system is:

xn+1 = A+
yn−k
yn

, yn+1 = B +
xn−k
xn

n = 0, 1, . . . (1.1.10)

with considering parameters A > 0 and B > 0, the initial conditions xi, yi are

arbitrary positive numbers for i = −k,−k + 1, . . . , 0 and k ∈ Z+.

The second system is:

xn+1 = A+
yn
yn−k

, yn+1 = A+
xn
xn−k

n = 0, 1, . . . (1.1.11)

with parameters A > 0 and the initial conditions xi, yi are arbitrary positive num-

bers for i = −k,−k + 1, . . . , 0 and k ∈ Z+.

Other associated difference equations and systems may be located in references

[[3],[5]-[8],[11],[13]-[16],[20]-[23]].

More details when considering the theory of difference equations have been supplied

in [[9],[10]]. Motivated by all the systems we previously mentioned, we introduce in

Chapter 2 the system

xn+1 = A+
yn
xn−k

, yn+1 = B +
xn
xn−k

, n = 0, 1, . . .

with positive parameters A and B, the initial conditions xi, yi are arbitrary positive

numbers for i = −k,−k + 1, . . . , 0 and k ∈ Z+.

In Chapter 3 , we introduce the system

xn+1 = A+
xn
yn−k

, yn+1 = B +
yn
xn−k

, n = 0, 1, . . .
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with positive parameters A and B, the initial conditions xi, yi are arbitrary positive

numbers for i = −k,−k + 1, . . . , 0 and k ∈ Z+. As a long way as we know, no work

has been reported in the literature on the dynamics of those system.

In Chapter 2, the semi-cycle of the system of the positive solutions of system (2.0.1)

is studied, when 0 < A < 1 and 0 < B < 1 we also find unbounded solutions of the

same system. When A ≥ 1 and B ≥ 1 we prove that the positive solutions of system

(2.0.1) are bounded and persist. Finally, we show that if A > 1 and B > 1 then the

unique positive equilibrium of system (2.0.1) is globally asymptotically stable.

Moreover, in Chapter 3 , we investigate system (3.0.1) via the method of semi-

cycle analysis , and then we assume some conditions to get unbounded solutions for

this system. We also prove that if A ≥ 1 and B ≥ 1 then every positive solutions of

system (3.0.1) are bounded and persist. Then, we show that when A > 1 and B > 1

the positive equilibrium point of system (3.0.1) is globally asymptotically stable.

We conclude each of these two chapters by numerical examples that illustrate the

our results.
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1.2 Basic Definitions and Results

In this part, we provide basic definitions and results that we’re about to use in the

following chapters. Consider the 2(k + 1) -dimensional dynamical system of the

following form:

xn+1 = f (xn, xn−1, . . . , xn−k, yn, yn−1, . . . , yn−k)

yn+1 = g (xn, xn−1, . . . , xn−k, yn, yn−1, . . . , yn−k)

n = 0, 1, . . .

(1.2.1)

where f, g are continuously differentiable real valued functions. For example

xn+1 = A+
yn−k
yn

, yn+1 = B +
xn−k
xn

, n = 0, 1, · · ·

Definition 1.1. (Equilibrium Point). A point (x̄, ȳ) is said to be an equilibrium

point of system (1.2.1) if

x̄ = f(x̄, x̄, . . . , x̄, ȳ, ȳ, . . . , ȳ)

and ȳ = g(x̄, x̄, . . . , x̄, ȳ, ȳ, . . . , ȳ)
(1.2.2)

Example 1.1. Consider the system

xn+1 = A+
yn−k
yn

, yn+1 = B +
xn−k
xn

, n = 0, 1, · · ·

To find equilibrium point we solve f(x̄, ȳ) = (x̄, ȳ) implies x̄ = A + ȳ
ȳ

= A +

1 and ȳ = B + x̄
x̄

= B + 1, so (x̄, ȳ) = (A+ 1, B + 1).
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Definition 1.2. (Stable, Unstable, Attracting, Asymptotically Stable and Globally

Asymptotically Stable Equilibrium Point). If (x̄, ȳ) is an equilibrium point of (1.2.1)

then

1. (x̄, ȳ) is said to be stable if for every ε > 0 there exists δ > 0 such that for every

initial condition (xi, yi) , i ∈ {−k,−k + 1, . . . , 0} if
∥∥∑0

i=−k (xi, yi)− (x̄, ȳ)
∥∥ < δ

implies that for all n > 0, ‖ (xn, yn)− (x̄, ȳ)‖ < ε, where ‖.‖ is usual Euclidian norm

in R2. Otherwise, (x̄, ȳ) is called unstable.

2. An equilibrium point (x̄, ȳ) is called attracting if there exists η > 0 such that∥∥∥∥∥
0∑

i=−k

(xi, yi)− (x̄, ȳ)

∥∥∥∥∥ < η implies lim
n→∞

(xn, yn) = (x̄, ȳ) (1.2.3)

3. (x̄, ȳ) is called a global attractor if in 2, η =∞.

4. An equilibrium point (x̄, ȳ) is called asymptotically stable if it is both stable and

attracting, and it is said to be globally asymptotically stable if it is both stable and

global attractor.

Definition 1.3. (Positive Solution). A pair of sequences of positive real numbers

{xn, yn}∞n=−k that satisfies (1.2.1) is a positive solution of (1.2.1).

Definition 1.4. (Equilibrium Solution). If a positive solution of (1.2.1) is a pair of

constants (x̄, ȳ), then the solution is the equilibrium solution.

Definition 1.5. (Periodic Solution). A positive solution {xn, yn}∞n=−k of (1.2.1)

is said to be periodic if there exists a positive integer m, such that for all n ≥
−k, (xn, yn) = (xn+m, yn+m). m is called the period of the solution.

Definition 1.6. (Eventually Periodic Solution). A positive solution {xn, yn}∞n=−k of

(1.2.1) is said to be eventually periodic if there exist an integer l > −k and a positive

integer m, such that (xn+l, yn+l) = (xn+l+m, yn+l+m) for all n = 0, 1, . . . where m is

the period of the solution.
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Definition 1.7. (Bounded Solution). A positive solution {xn, yn}∞n=−k of (1.2.1) is

bounded and persists if there exist positive real numbers P1, Q1, P2 and Q2 such that

P1 ≤ xn ≤ Q1 and P2 ≤ yn ≤ Q2 for n ≥ −k.

Definition 1.8. (Increasing and Decreasing Solution). A positive solution {xn, yn}∞n=−k

of (1.2.1) is demonstrated to be increasing (respectively decreasing) if n > m, then

xn > xm and yn > ym (respectively xn < xm and yn < ym) for all n ≥ 1 and m ≥ 1.

Definition 1.9. A series of consecutive expression {xt, . . . , xr} (respectively {yt, . . . , yr}) , t ≥
−k, and r ≤ ∞ is demonstrated to be a positive semi-cycle if xi ≥ x̄ (respectively

yi ≥ ȳ) , i ∈ {t, . . . , r}, xt−1 < x̄ (respectively yt−1 < ȳ) , and xr+1 < x̄ (yr+1 < ȳ)

Definition 1.10. A series of consecutive expression {xt, . . . , xr} (respectively {yt, . . . , yr}) , t ≥
−k, and r ≤ ∞ is demonstrated to be a negative semi-cycle if xi < x̄ (respectively

yi < ȳ) , i ∈ {t, . . . , r}, xt−1 ≥ x̄ (respectively yt−1 ≥ ȳ) , and xr+1 ≥ x̄ (yr+1 ≥ ȳ)

Definition 1.11. A series of consecutive expression {(xt, yt) , . . . , (xr, yr)} , t ≥ −k,
and r ≤ ∞ is demonstrated to be a positive semi-cycle (respectively negative semi-

cycle) if both {xt, . . . , xr} and {yt, . . . , yr} are positive semi-cycles (respectively neg-

ative semi-cycles).

Definition 1.12. A series of consecutive expression {(xt, yt) , . . . , (xr, yr)} , and

t ≥ −k, r ≤ ∞ is demonstrated to be a positive semi-cycle (respectively negative

semi-cycle) with related to xn and negative semi-cycle(respectively positive semi-

cycle) with related to yn if {xt, . . . , xr} is a positive semi-cycle (respectively nega-

tive semi-cycle) and {yt, . . . , yr} is a negative semi-cycle (respectively positive semi-

cycle).

The first semi-cycle of a solution of (1.2.1) starts with the term (x−k, y−k) , and

it’s positive (respectively negative) if x−k ≥ x̄ and y−k ≥ ȳ ( respectively x−k < x̄

and y−k < ȳ)
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Definition 1.13. (Nonoscillatory Solution). A sequence xn (respectively yn) is

called nonoscillatory about x̄ (respectively ȳ ) if there exists N ≥ −k such that

xn ≥ x̄ (respectively, . yn ≥ ȳ) or xn < x̄ (respectively, yn < ȳ) for all n ≥ N.

We mention that a solution {xn, yn}∞n=−k of system (1.2.1) is a nonoscillatory so-

lution about (x̄, ȳ) if xn is nonoscillatory about x̄ and yn is nonoscillatory about ȳ.

However, a solution {xn, yn}∞n=−k is called oscillatory if it is not nonoscillatory.

Definition 1.14. (Nonoscillatory Positive and Nonoscillatory negative Solutions).

A solution {xn, yn}∞n=−k of system (1.2.1) is a nonoscillatory positive (respectively

negative) solution about (x̄, ȳ) if there exists N ≥ −k such that xn ≥ x̄ and yn ≥ ȳ

(respectively xn < x̄ and yn < ȳ) for all n ≥ N .

Definition 1.15. (Jacobian Matrix). The Jacobian Matrix is a matrix that takes

the partial derivatives of the linearization with respect to each of the sequence at the

equilibrium point.

Definition 1.16. (Linearized Form of (1.2.1) Let (x̄, ȳ) be an equilibrium point

of system (1.2.1) where f, g are continuously differentiable functions at (x̄, ȳ). The

linearized system of (1.2.1) concerning the point of equilibrium has the form:

Xn+1 = JXn

where Xn = (xn, xn−1, . . . , xn−k, yn, yn−1, . . . , yn−k)
T and J is a Jacobian matrix of

system (1.10) concerning the point of equilibrium.

Theorem 1.1. [28] For the linearized system Xn+1 = JXn, n = 0, 1, . . . of (1.2.1).

If all eigenvalues of the Jacobian matrix J about (x̄, ȳ) lie inside the open unit disk

|λ| < 1, then (x̄, ȳ) is locally asymptotically stable. If one of them has a modulus

greater than one, then (x̄, ȳ) is unstable.
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Definition 1.17. (Limit Superior and Limit Inferior). Let {xn} be a sequence of

real numbers. The limit superior of {xn} , denoted by lim sup {xn} , is defined by

lim sup {xn} = lim
n→∞

[sup {xm;m ≥ n}] = inf
n≥0

[sup {xm;m ≥ n}]

The limit inferior of {xn} , denoted by lim inf {xn} , is defined by

lim inf {xn} = lim
n→∞

[inf {xm;m ≥ n}] = sup
n≥0

[inf {xm;m ≥ n}]

Example 1.2. Consider the sequence {xn} = {0, 1, 0, 1, ...}. Then βn = sup{xm,m ≥
n} = 1 and αn = inf{xm,m ≥ n} = 0

Example 1.3. Consider the sequence {yn} = (−1)n. Then βn = sup{ym,m ≥ n} =

1 and αn = inf{ym,m ≥ n} = −1

Definition 1.18. (Spectral Radius). Let M be any real n × n matrix, and assume

λ1, λ2, . . . , λn are the eigenvalues of M. Then the spectral radius of M, denoted by

ρ(M), is given by:

ρ(M) = max
1≤i≤n

{|λi|}

Theorem 1.2. [28] Let ||.|| be any matrix norm defined on the set of all real n× n
matrices (Mn) . Then for any matrix M ∈Mn

ρ(M) ≤ ‖A‖

Definition 1.19. (Infinite Norm of a Matrix). Let M ba any matrix in Mn. The

infinite norm of M, denoted by ‖M‖∞, is given by:

‖M‖∞ = max
1≤r≤n

n∑
c=1

|mr,c|



2. DYNAMICS OF THE SYSTEM

XN+1 = A+ YN

YN−K
, YN+1 = B + XN

XN−K

In this chapter, we introduce the symmetrical system:

xn+1 = A+
yn
yn−k

, yn+1 = B +
xn
xn−k

, n = 0, 1, · · · (2.0.1)

with parameters A > 0 and B > 0, the initial conditions xi, yi are arbitrary positive

numbers for i = −k,−k+ 1, · · · , 0 and k ∈ Z+. We observe the dynamical behavior

of this system in the cases: When 0 < A < 1 and 0 < B < 1 and when A > 1

and B > 1, we additionally look at the behavior of the positive solutions of (2.0.1)

using the semi-cycle analysis method. Finally, we give some numerical examples

that supports the results in this chapter.

System (2.0.1) has the unique positive equilibrium (x̄, ȳ) = (A + 1, B + 1)

since f(x̄, ȳ) = (x̄, ȳ) implies x̄ = A + ȳ
ȳ

= A + 1 and ȳ = B + x̄
x̄

= B + 1 so

(x̄, ȳ) = (A+ 1, B + 1).

There are two cases to be considered:

• Case 1: If A = B then system (2.0.1) turns into the symmetrical system

xn+1 = A+
yn
yn−k

, yn+1 = A+
xn
xn−k

, n = 0, 1, · · ·

with parameter A > 0, the initial conditions xi, yi are arbitrary positive num-

bers for i = −k,−k + 1, · · · , 0 and k ∈ Z+, which was studied in [1].

• Case 2: We study the general case, which is a generalization of the study in

[1].
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2.1 Semi-cycle Analysis I

In this section, we have a look at the behavior of positive solutions of system (2.0.1)

by semi-cycle analysis method.

Theorem 2.1. Let {xn, yn}∞n=−k be a solution of system (2.0.1). Then, both this

solution is non-oscillatory solution or it oscillates about the equilibrium (x̄, ȳ) =

(A+ 1, B + 1) with semi-cycles such that if there exists a semi-cycle with at least k

terms, then each semi-cycle after that has at least k + 1 terms.

Proof. Assume {xn, yn}∞n=−k is a solution of system (2.0.1), and there exists an

integer n0 ≥ 0 such that (xn0 , yn0) is the last term of a semi-cycle that has at least

k terms. Then, both

..., xn0−k+1, ..., xn0−1, xn0 < 1 + A ≤ xn0+1

and

..., yn0−k+1, ..., yn0−1, yn0 < 1 +B ≤ yn0+1

or

..., xn0−k+1, ..., xn0−1, xn0 ≥ 1 + A > xn0+1

and

..., yn0−k+1, ..., yn0−1, yn0 ≥ 1 +B > yn0+1

• Case 1: If ..., xn0−k+1, ..., xn0−1, xn0 < 1+A ≤ xn0+1 and ..., yn0−k+1, ..., yn0−1, yn0 <

1 +B ≤ yn0+1, then

xn0+2 = A+
yn0+1

yn0−k+1

> A+ 1 and yn0+2 = B +
xn0+1

xn0−k+1

> B + 1

xn0+3 = A+
yn0+2

yn0−k+2

> A+ 1 and yn0+3 = B +
xn0+2

xn0−k+2

> B + 1

...

xn0+k = A+
yn0+k−1

yn0−1

> A+ 1 and yn0+k = B +
xn0+k−1

xn0−1

> B + 1
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xn0+k+1 = A+
yn0+k

yn0

> A+ 1 and yn0+k+1 = B +
xn0+k

xn0

> B + 1

hence, the semi-cycle beginning with (xn0+1, yn0+1) has at least k + 1 terms.

Now, assume the semi-cycle which begins with (xn0+1, yn0+1) has exactly k+ 1

terms, then the following semi-cycle will begin with (xn0+k+2, yn0+k+2) such

that

xn0+1, xn0+2, ..., xn0+k+1 ≥ 1 + A > xn0+k+2 and yn0+1, yn0+2, ..., yn0+k+1 ≥ 1 +

B > yn0+k+2 , then for i = 1, 2, 3, .., k

xn0+k+2+i = A+
yn0+k+1+i

yn0+1+i

< A+ 1

and

yn0+k+2+i = B +
xn0+k+1+i

xn0+1+i

< B + 1

so, each semi-cycle after this point must have at least k + 1 terms.

• Case 2: If ..., xn0−k+1, ..., xn0−1, xn0 ≥ 1+A > xn0+1 and ..., yn0−k+1, ..., yn0−1, yn0 ≥
1 +B > yn0+1, then for all i = 2, 3, ..., k + 1

xn0+i = A+
yn0−1+i

yn0−k−1+i

< A+ 1

and

yn0+i = B +
xn0−1+i

xn0−k−1+i

< B + 1

hence, the semi-cycle beginning with (xn0+1, yn0+1) has at least k + 1 terms.

Now, assume this semi-cycle has exactly k+ 1 terms, then the following semi-

cycle will begins with (xn0+k+2, yn0+k+2) such that xn0+1, xn0+2, ..., xn0+k+1 <

1 + A ≤ xn0+k+2 and yn0+1, yn0+2, ..., yn0+k+1 < 1 + B ≤ yn0+k+2 then for

i = 1, 3, ..., k

xn0+k+2+i = A+
yn0+k+1+i

yn0+1+i

> A+ 1

and

yn0+k+2+i = B +
xn0+k+1+i

xn0+1+i

> B + 1

so, each semi-cycle after this point must have at least k + 1 terms.

�
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Theorem 2.2. System (2.0.1) has no nontrivial k-periodic solutions of period k

(not necessarily prime period k).

Proof. Assume system (2.0.1) has a k-periodic solution. Then (xn−k, yn−k) = (xn, yn)

for all n ≥ 0, and so xn+1 = A+ yn
yn−k

= A+ 1 and yn+1 = B + xn
xn−k

= B + 1, for all

n ≥ 0. Thus, the solution (xn, yn) = (A + 1, B + 1) is the equilibrium solution of

(2.0.1) �

Theorem 2.3. All non-oscillatory solutions of System (2.0.1)have a tendency to

the equilibrium.(x̄, ȳ) = (A+ 1, B + 1).

Proof. Assume that system (2.0.1) has a non-oscillatory solution say {xn, yn}∞n=−k.

Then via way of means of Theorem (2.1) the solution includes a single semi-cycle,

either this semi-cycle is positive or negative. Assume that the solution is of negative

semi-cycle. Then for all n ≥ −k, (xn, yn) < (A+ 1, B + 1), so

xn+1 = A+
yn
yn−k

< A+ 1 implies yn < yn−k

yn+1 = B +
xn
xn−k

< B + 1 implies xn < xn−k

A < ... < xn+k < xn < xn−k < A+ 1

and

B < ... < yn+k < yn < yn−k < B + 1

which means that xn, yn have k subsequences

{xnk}, {xnk+1}, · · · , {xnk+(k−1)} and {ynk}, {ynk+1}, · · · , {ynk+(k−1)}

every subsequence is decreasing and bounded from below, so every one of them is

convergent, so for all i = 0, 1, ..., k − 1 there exist αi, βi such that

lim
n→∞

xnk+i = αi and lim
n→∞

ynk+i = βi.

Thus

(α0, β0), (α1, β1), · · · , (αk−1, βk−1)
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is a k-periodic solution of system (2.0.1), which contradicts Theorem (2.2) except

the solution is the trivial solution. So, the solution converges to the equilibrium. �

Theorem 2.4. Any increasing solution to system (2.0.1) is non-oscillatory positive

(the infinite semi-cycle in the solution is a positive semi-cycle).

Proof. Assume {xn, yn}∞n=−k is an increasing non-oscillatory solution to system (2.0.1).Then,

either A+ 1 ≤ x1 and B + 1 ≤ y1 or x1 < A+ 1 and y1 < B + 1.

• Case 1: If A + 1 ≤ x1 and B + 1 ≤ y1, since the solution is increasing then

A + 1 ≤ x1 ≤ x2 ≤ x3 ≤ ... and B + 1 ≤ y1 ≤ y2 ≤ y3 ≤ ..., so the solution

has an infinite positive semi-cycle.

• Case 2: If x1 < A + 1 and y1 < B + 1, then we claim that the semi-cycle

containing (x1, y1) ends with (xi, yi) such that 1 ≤ i ≤ k+ 1. If i = k+ 2 then

xk+2 = A+
yk+1

y1

< A+ 1 and yk+2 = B +
xk+1

x1

< B + 1

imply that

yk+1 < y1 and xk+1 < x1

but k+ 1 > 1 which contradicts the fact that the solution is increasing, so any

increasing solution of system is non-oscillatory positive.

�
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Theorem 2.5. System (2.0.1)has no decreasing non-oscillatory solution.

Proof. Assume system (2.0.1) has a decreasing non-oscillatory solution say {xn, yn}∞n=−k.

As in proof of Theorem (2.4) the solution is either of the form

... ≤ x3 ≤ x2 ≤ x1 < A+ 1 and ... ≤ y3 ≤ y2 ≤ y1 < B + 1

or there exists a positive integer n0 ≥ k + 1, such that

... ≤ xn0+2 ≤ xn0+1 < A+ 1 ≤ xn0 ≤ xn0−1...

and

... ≤ yn0+2 ≤ yn0+1 < B + 1 ≤ yn0 ≤ yn0−1...

where the positive semi-cycle ending with (xn0 , yn0) will have at most 2k+ 2 terms.

In each cases, the solution has an infinite negative semi-cycle which contradicts

Theorem (2.3). Hence, system (2.0.1) has no decreasing non-oscillatory solutions.

�

2.2 Semi-cycle Analysis II

In this section, we observe extra properties of qualitative behavior of positive so-

lutions of system (2.0.1) by semi-cycle analysis.Throughout this section, we carry

out semi-cycle analysis when x and y have semi-cycles of the specific types, that is,

positive (resp. negative) semi-cycle for x and negative (resp. positive) semi-cycle

for y, see definition(1.12) . We call the solution in this situation a solution with

specific semi-cycles.

Theorem 2.6. The following statements are true:

(a) Any solution to system (2.0.1) that is increasing with respect to x and decreasing

with respect to y is non-oscillatory positive with respect to x and non-oscillatory

negative with respect to y.



2.2. SEMI-CYCLE ANALYSIS II 18

(b) Any solution to system (2.0.1) that is decreasing with respect to x and increasing

with respect to y is non-oscillatory a negative semi-cycle with respect to x and

non-oscillatory positive with respect to y.

Proof. We prove statement (a). Assume {xn, yn}∞n=−k is an increasing solution with

respect to x and decreasing with respect to y to system (2.0.1). Then we have the

following cases:

(1) A+ 1 < x1 and B + 1 ≥ y1.

(2) A+ 1 < x1 and B + 1 < y1.

(3) A+ 1 ≥ x1 and B + 1 ≥ y1.

(4) A+ 1 ≥ x1 and B + 1 < y1.

• Case (1): if A + 1 < x1 and B + 1 ≥ y1, since the solution is increasing with

respect to x and decreasing with respect to y then A+ 1 < x1 < x2 < x3 < ...

and B + 1 ≥ y1 > y2 > y3 > ... , so the solution has an infinite positive

semi-cycle with respect to x and an infinite negative semi-cycle with respect

to y.

• Case (2): if A+1 < x1 and B+1 < y1, then we can conclude that the solution

has an infinite positive semi-cycle with respect to x. As for y, we claim that

the semi-cycle containing y1 ends with yi such that 1 ≤ i ≤ k+ 1. If i = k+ 2,

then

yk+2 = B +
xk+1

x1

> B + 1

imply that the solution of (2.0.1) has an infinite positive semi-cycle with re-

spect to x and infinite positive semi-cycle with respect to y.

• Case (3): if A+1 ≥ x1 and B+1 ≥ y1, then we can conclude that the solution

has an infinite negative semi-cycle with respect to y. As for x, we claim that
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the semi-cycle containing x1 ends with xi such that 1 ≤ i ≤ k+1. If i = k+2,

then

xk+2 = A+
yk+1

y1

< A+ 1

imply that the solution of (2.0.1) has an infinite negative semi-cycle with

respect to x and infinite negative semi-cycle with respect to y.

• Case (4): if A + 1 ≥ x1 and B + 1 < y1, then we claim that the semi-cycle

containing (x1, y1) ends with (xi, yi) such that 1 ≤ i ≤ k+ 1. If i = k+ 2, then

xk+2 = A+
yk+1

y1

< A+ 1 and yk+2 = B +
xk+1

x1

> B + 1

imply that the solution of (2.0.1) has an infinite negative semi-cycle with

respect to x and infinite positive semi-cycle with respect to y.

Now we need prove statement (b). Assume {xn, yn}∞n=−k is an increasing solution

with respect to y and decreasing with respect to x to system (2.0.1). Then we have

the following cases:

(1) A+ 1 ≥ x1 and B + 1 < y1.

(2) A+ 1 < x1 and B + 1 < y1.

(3) A+ 1 ≥ x1 and B + 1 ≥ y1.

(4) A+ 1 < x1 and B + 1 ≥ y1.

• Case (1):if A + 1 ≥ x1 and B + 1 < y1, since the solution is increasing with

respect to y and decreasing with respect to x then B + 1 < y1 < y2 < y3 < ...

and A + 1 ≥ x1 > x2 > x3 > ... , so the solution has an infinite positive

semi-cycle with respect to y and an infinite negative semi-cycle with respect

to x.
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• Case (2): if A+1 < x1 and B+1 < y1, then we can conclude that the solution

has an infinite positive semi-cycle with respect to y. As for x, we claim that

the semi-cycle consist of a x1 ends with xi such that 1 ≤ i ≤ k+1. If i = k+2,

then

xk+2 = A+
yk+1

y1

> A+ 1

imply that the solution of (2.0.1) has an infinite positive semi-cycle with re-

spect to y and infinite positive semi-cycle with respect to x.

• Case (3): if A+1 ≥ x1 and B+1 ≥ y1, then we can conclude that the solution

has an infinite negative semi-cycle with respect to x. As for y, we claim that

the semi-cycle consist of a y1 ends with yi such that 1 ≤ i ≤ k+1. If i = k+2,

then

yk+2 = B +
xk+1

x1

< B + 1

imply that the solution of (2.0.1) has an infinite negative semi-cycle with

respect to y and infinite negative semi-cycle with respect to x.

• Case (4): if A + 1 < x1 and B + 1 ≥ y1, then we claim that the semi-cycle

consist of a (x1, y1) ends with (xi, yi) such that 1 ≤ i ≤ k + 1. If i = k + 2,

then

xk+2 = A+
yk+1

y1

> A+ 1 and yk+2 = B +
xk+1

x1

< B + 1

mean that the solution of (2.0.1) has an infinite negative semi-cycle with re-

spect to y and infinite positive semi-cycle with respect to x. Hence, any in-

creasing solution with respect to x and decreasing with respect to y to system

(2.0.1) is non-oscillatory positive with respect to x and negative with respect

to y.

�
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Theorem 2.7. System (2.0.1) has no non-oscillatory solutions.

Proof. Assume that system (2.0.1) has a non-oscillatory solution, say {xn, yn}∞n=−k

which has an infinite negative semi-cycle, and assume this semi-cycle starts with

(xN , yN) satisfies xn ≥ A+ 1 and yn < B + 1 or xn < A+ 1 and yn ≥ B + 1 for all

n ≥ N. Then

Case (1):

xn+1 = A+
yn
yn−k

≥ A+ 1 implies yn ≥ yn−k for n ≥ max{1, N − 1}

and

yn+1 = B +
xn
xn−k

< B + 1 implies xn < xn−k for n ≥ max{1, N − 1}

so for all n ≥ max{1, N}

xn−k > xn > xn+k > ... ≥ A+ 1

and

B + 1 > yn+k ≥ yn ≥ yn−k ≥ ... ≥ B

implies the solution is bounded, which means that {xn}, {yn} have k subsequences

{xnk}, {xnk+1, ..., {xnk+(k−1)} and {ynk}, {ynk+1, ..., {ynk+(k−1)} such that each subse-

quence of {xn} is decreasing and bounded from below and each subsequence of {yn}
is increasing and bounded from above, so each one of all subsequences is convergent,

so for all i = 0, 1, ..., k − 1 there exist γi, δi such that

lim
n→∞

xnk+i = γi and lim
n→∞

ynk+i = δi

Thus,

(γ0, δ0), (γ1, δ1), ..., (γk−1, δk−1)

is a k-periodic solution of system (2.0.1), which contradicts the previous theorem

(2.2) until the solution is the trivial solution. Hence, the solution converges to the

equilibrium, which is a contradiction, due to the solution is diverging from the equi-

librium. Hence, system (2.0.1) has no non-oscillatory solutions which have positive
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semi-cycles with respect to x and negative semi-cycles with respect to y (or negative

with respect to x and positive with respect to y).

Case (2):

xn+1 = A+
yn
yn−k

< A+ 1 implies yn < yn−k for n ≥ max{1, N − 1}

and

yn+1 = B +
xn
xn−k

≥ B + 1 implies xn ≥ xn−k for n ≥ max{1, N − 1}

so for n ≥ max{1, N}

A+ 1 > xn+k ≥ xn ≥ xn−k ≥ ... ≥ A

and

yn−k > yn > yn+k > ... ≥ B + 1

implies the solution is bounded, which means that {xn}, {yn} have k subsequences

{xnk}, {xnk+1, ..., {xnk+(k−1)} and {ynk}, {ynk+1, ..., {ynk+(k−1)} such that each subse-

quence of {xn} is increasing and bounded from above and each subsequence of {yn}
is decreasing and bounded from below, so each one of all subsequences is convergent,

so for all i = 0, 1, ..., k − 1 there exist γi, δi such that

lim
n→∞

xnk+i = γi and lim
n→∞

ynk+i = δi
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Thus,

(γ0, δ0), (γ1, δ1), ..., (γk−1, δk−1)

is a k-periodic solution of system (2.0.1), which contradicts the previous theorem

(2.2) until the solution is the trivial solution. Hence, the solution converges to

the equilibrium, which is a contradiction, due to the solution is diverging from

the equilibrium. Hence, system (2.0.1) has no non-oscillatory solutions which have

positive semi-cycles with respect to x and negative semi-cycles with respect to y (or

negative with respect to x and positive with respect to y). �

Corollary 2.7.1. If A ≥ 1 and B ≥ 1, then system (2.0.1) has no increasing (resp.

decreasing) solution with respect to x and decreasing (resp. increasing) with respect

to y.

Proof. Assume that system (2.0.1) has an increasing solution with respect to x and

decreasing with respect to y, or a decreasing solution with respect to x and increasing

with respect to y. Then from theorem (2.6). the solution is non-oscillatory and

departs from the equilibrium (A + 1, B + 1) which contradicts theorem (2.7) and

theorem (2.3) �
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2.3 The Case 0 < A < 1 and 0 < B < 1

In this section, we study the asymptotic behavior of system (2.0.1) when 0 < A <

1 and 0 < B < 1. System (2.0.1) can have unbounded solutions given specific

conditions.

Theorem 2.8. Suppose that 0 < A < 1 and 0 < B < 1 . Let c = max{A,B}
and {xn, yn}∞n=−k be an arbitrary positive solution of (2.0.1). Then the following

statements are true:

(a) If k is odd and 0 < x2m−1 < 1, x2m > 1
1−c , y2m−1 >

1
1−c , 0 < y2m < 1 for m =

1−k
2
, 3−k

2
, ..., 0, then lim

n→∞
x2n =∞, lim

n→∞
y2n+1 =∞, lim

n→∞
x2n+1 = A, lim

n→∞
y2n = B

(b) If k is odd and 0 < x2m < 1, x2m−1 >
1

1−c , y2m > 1
1−c , 0 < y2m−1 < 1 for

m = 1−k
2
, 3−k

2
, ..., 0, then lim

n→∞
x2n+1 =∞, lim

n→∞
y2n =∞, lim

n→∞
x2n = A,

lim
n→∞

y2n+1 = B

Proof. • If k is odd and 0 < x2m−1 < 1, x2m > 1
1−c , y2m−1 >

1
1−c , 0 < y2m < 1 for

m = 1−k
2
, 3−k

2
, ..., 0, then

0 < x1 = A+
y0

y−k
< A+

1

y−k
< A+ 1− c ≤ A+ 1− A = 1

y1 = B +
x0

x−k
> B + x0 > x0 >

1

1− c

x2 = A+
y1

y−k+1

> A+ y1 > y1 >
1

1− c

0 < y2 = B +
x1

x−k+1

< B +
1

x−k+1

< B + 1− c ≤ B + 1−B = 1

By induction, we get that for n = 1, 2, ...

0 < x2n−1 < 1, x2n >
1

1− c
, y2n−1 >

1

1− c
, 0 < y2n < 1
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so for l ≥ 1

x2l = A+
y2l−1

y2l−(k+1)

> A+ y2l−1 = A+B +
x2l−2

x2l−k−2

> A+B + x2l−2

x4l = A+
y4l−1

y4l−(k+1)

> A+ y4l−1 = A+B +
x4l−2

x4l−k−2

> A+B + x4l−2

= 2A+B+
y4l−3

y4l−k−3

> 2A+B+ y4l−3 = 2A+ 2B+
x4l−4

x4l−k−4

> 2A+ 2B+x4l−4

also

x6l > 3A+ 3B + x6l−6

so for all r = 1, 2, ...

x2rl > r(A+B) + x2rl−2r

if n = rl, then as r → ∞ and lim
n→∞

x2n = ∞. Considering (2.0.1) and taking

the limit on both sides of the equation

y2n+1 = B +
x2n

x2n−k

we get lim
n→∞

y2n+1 = ∞ since 0 < x2n−k < 1 for all n = 0, 1, ... Now, take the

limit on both sides of the equation

x2n+1 = A+
y2n

y2n−k

we obtain lim
n→∞

x2n+1 = A since 0 < y2n < 1 for all n. Now, take the limit on

both sides of the equation

y2n+2 = B +
x2n+1

x2n−k+1

to get lim
n→∞

y2n = B, which completes the proof of (a)

• If k is odd and 0 < x2m < 1, x2m−1 > 1
1−c , y2m > 1

1−c , 0 < y2m−1 < 1 for

m = 1−k
2
, 3−k

2
, ..., 0, then

x1 = A+
y0

y−k
> A+ y0 > y0 >

1

1− c

0 < y1 = B +
x0

x−k
< B +

1

x−k
< B + 1− c ≤ B + 1−B = 1
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0 < x2 = A+
y1

y−k+1

< A+
1

y−k+1

< A+ 1− c ≤ A+ 1− A = 1

y2 = B +
x1

x−k+1

> B + x1 > x1 >
1

1− c
By induction, we have for all n = 1, 2, ...

0 < x2n < 1, x2n−1 >
1

1− c
, y2n >

1

1− c
, 0 < y2n−1 < 1

so for l ≥ 1

x2l+1 = A+
y2l

y2l−k
> A+ y2l = A+B +

x2l−1

x2l−k−1

> A+B + x2l−1

x4l+1 = A+
y4l

y4l−k
> A+ y4l = A+B +

x4l−1

x4l−k−1

> A+B + x4l−1

= 2A+B+
y4l−2

y4l−k−2

> 2A+B+ y4l−2 > 2A+ 2B+
x4l−3

x4l−k−3

> 2A+ 2B+x4l−3

also, x6l+1 > 3A+ 3B + x6l−5. So for all r = 1, 2, ...

x2rl+1 > r(A+B) + x2rl−(2r−1)

if n = rl, then as r → ∞, n → ∞ and lim
n→∞

x2n+1 = ∞. Considering (2.0.1)

and taking the limit on both sides of the equation

y2n+2 = B +
x2n+1

x2n−k+1

we get lim
n→∞

y2n = ∞ since 0 < x2n−k+1 < 1 for all n = 0, 1, ... Now, take the

limit on both sides of the equation

y2n+1 = B +
x2n

x2n−k

we obtain lim
n→∞

y2n+1 = B since 0 < x2n < 1 for all n. Now, take the limit on

both sides of the equation

x2n+2 = A+
y2n+1

y2n−k+1

to get lim
n→∞

x2n = A, which completes the proof.

�
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2.4 The Case A > 1 and B > 1

In this section, we study the boundedness and persistence of the positive solutions

of system (2.0.1) when A > 1 and B > 1. We also prove that if A > 1 and B > 1

then the unique positive equilibrium of (2.0.1) is globally asymptotically stable.

Lemma 2.9. Given vj, where j = −k,−k + 1, ..., k + 1. Then the solution of the

second order linear difference equation

vn+2 = avn + b, n ≥ k, a 6= 1

is of the form

vk+2l =

(
vk +

b

a− 1

)
al +

b

1− a

vk+2l+1 =

(
vk+1 +

b

a− 1

)
al +

b

1− a

for all l ≥ 0

Proof.

vk+2 = avk + b,

vk+3 = avk+1 + b,

vk+4 = avk+2 + b = a2vk + ab+ b,

vk+5 = avk+3 + b = a2vk+1 + ab+ b,

vk+6 = avk+4 + b = a3vk + a2b+ ab+ b,

vk+7 = avk+5 + b = a3vk+1 + a2b+ ab+ b,

hence, for all l ≥ 0

vk+2l = a1vk + b(al−1 + al−2 + ...+ 1) =

(
vk +

b

a− 1

)
al +

b

1− a
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vk+2l+1 = a1vk+1 + b(al−1 + al−2 + ...+ 1) =

(
vk+1 +

b

a− 1

)
al +

b

1− a

which completes the proof. �

Theorem 2.10. Suppose that A > 1 and B > 1. Then every positive solution of

system (2.0.1) is bounded and persists. In fact, for all l ≥ 0,

A < xk+2l ≤

(
xk +

(A+ 1)AB

1− AB

)(
1

AB

)l

+
(A+ 1)AB

AB − 1

and

A < xk+2l+1 ≤

(
xk+1 +

(A+ 1)AB

1− AB

)(
1

AB

)l

+
(A+ 1)AB

AB − 1

similarly,

B < yk+2l ≤

(
yk +

(B + 1)AB

1− AB

)(
1

AB

)l

+
(B + 1)AB

AB − 1

and

B < yk+2l+1 ≤

(
yk+1 +

(B + 1)AB

1− AB

)(
1

AB

)l

+
(B + 1)AB

AB − 1

Proof. Assume A > 1, B > 1 and {xn, yn}∞n=−k is a positive solution of system

(2.0.1). Since xn > 0 and yn > 0 for all n ≥ −k, (2.0.1) implies that

xn > A > 1, yn > B > 1 for all n ≥ 1 (2.4.1)

Now, using (2.0.1) and (2.4.1) we get that for all n ≥ 2

xn = A+
yn−1

yn−k−1

< A+
1

B
yn−1

yn = B +
xn−1

xn−k−1

< B +
1

A
xn−1

(2.4.2)

Let vn, wn be the solution of the system

vn = A+
1

B
wn−1, wn = B +

1

A
vn−1, for all n ≥ k + 1 (2.4.3)
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such that

vi = xi, wi = yi, i = 1, 2, ..., k + 1 (2.4.4)

now, we use induction to prove that

xn < vn, yn < wn, for all n ≥ k + 2 (2.4.5)

Suppose that (2.4.5) is true for n = m ≥ k + 2. Then from (2.4.2), we get

xm+1 < A+
1

B
ym < A+

1

B
wm = vm+1

ym+1 < B +
1

A
xm < B +

1

A
vm = wm+1

(2.4.6)

Therefore, (2.4.5)is true. From (2.4.3) and (2.4.4), we have

vn+2 = A+ 1 +
1

AB
vn, (2.4.7)

wn+2 = B + 1 +
1

AB
wn, (2.4.8)

n ≥ k (2.4.9)

for simplicity, let a = 1
AB

, b = A+ 1 and c = B + 1. Then (2.4.7) becomes

vn+2 = avn + b, wn+2 = awn + c, n ≥ k

Now, using Lemma(2.9), for all l ≥ 0

vk+2l = alxk + b(al−1 + al−2 + ...+ 1) =

(
xk +

b

a− 1

)
al +

b

1− a

vk+2l+1 = alxk+1 + b(al−1 + al−2 + ...+ 1) =

(
xk+1 +

b

a− 1

)
al +

b

1− a
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since A > 1, B > 1 and a = 1
AB
, b = A+ 1. Then for all l ≥ 0

vk+2l =

(
xk +

(A+ 1)AB

1− AB

)(
1

AB

)l

+
(A+ 1)AB

AB − 1

vk+2l+1 =

(
xk+1 +

(A+ 1)AB

1− AB

)(
1

AB

)l

+
(A+ 1)AB

AB − 1

(2.4.10)

Then, from (2.4.1), (2.0.1) and(2.4.10), for all l ≥ 0

A < xk+2l ≤

(
xk +

(A+ 1)AB

1− AB

)(
1

AB

)l

+
(A+ 1)AB

AB − 1

A < xk+2l+1 ≤

(
xk+1 +

(A+ 1)AB

1− AB

)(
1

AB

)l

+
(A+ 1)AB

AB − 1

And since A > 1, B > 1 and a = 1
AB
, b = A+ 1. Then for all l ≥ 0

wk+2l =

(
yk +

(B + 1)AB

1− AB

)(
1

AB

)l

+
(B + 1)AB

AB − 1

wk+2l+1 =

(
yk+1 +

(B + 1)AB

1− AB

)(
1

AB

)l

+
(B + 1)AB

AB − 1

(2.4.11)

Then, from (2.4.1), (2.0.1) and(2.4.11), for all l ≥ 0

B < yk+2l ≤

(
yk +

(B + 1)AB

1− AB

)(
1

AB

)l

+
(B + 1)AB

AB − 1

B < yk+2l+1 ≤

(
yk+1 +

(B + 1)AB

1− AB

)(
1

AB

)l

+
(B + 1)AB

AB − 1

The proof is complete �
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Theorem 2.11. If A > 1 and B > 1. Then every positive solution of system (2.0.1)

converges to the equilibrium (x̄, ȳ) = (A+ 1, B + 1) as n→∞.

Proof. Let {xn, yn}∞n=−k be an arbitrary positive solution of (2.0.1), and let

u1 = lim
n→∞

supxn, l1 = lim
n→∞

inf xn

u2 = lim
n→∞

sup yn, l2 = lim
n→∞

inf yn

Now, system (2.0.1) implies that

u1 ≤ A+
u2

l2
, u2 ≤ B +

u1

l1
, l1 ≥ A+

l2
u2

, l2 ≥ B +
l1
u1

(2.4.12)

from (2.4.12) we get u1l2 ≤ Al2 + u2 and u1l2 ≥ u1B + l1

then

Bu1 + l1 ≤ u1l2 ≤ Al2 + u2 (2.4.13)

Au2 + l2 ≤ u2l1 ≤ Bl1 + u1 (2.4.14)

from (2.4.13) we get

Bu1 + l1 ≤ Al2 + u2 (2.4.15)

and (2.4.14) implies

−Bl1 − u1 ≤ −Au2 − l2 (2.4.16)

from (2.4.15) and (2.4.16) we get

Bu1 + l1 −Bl1 − u1 ≤ Al2 + u2 − Au2 − l2

and

(B − 1)(u1 − l1) + (A− 1)(u2 − l2) ≤ 0
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but A > 1 and B > 1 so A− 1 > 0 and B − 1 > 0, also u1 − l1, u2 − l2 ≥ 0. Hence

u1 − l1 = 0 and u2 − l2 = 0

so u1 = l1 and u2 = l2. Now use (2.4.12) to get

B + 1 ≤ l2 = u2 ≤ B + 1 and A+ 1 ≤ l1 = u1 ≤ A+ 1

hence

l1 = u1 = A+ 1 and l2 = u2 = B + 1

so

lim
n→∞

xn = l1 = u1 = A+ 1 and lim
n→∞

yn = l2 = u2 = B + 1

which completes the proof. �

Lemma 2.12. If A > 1 and 0 < ε < A−1
(A+1)(k+1)

where k ∈ Z+, then
2

(1−(k+1)ε)(A+1)
< 1.

Proof.

0 < ε <
1

(k + 1)

A− 1

A+ 1
implies 0 < (k + 1)ε <

A− 1

A+ 1

so

1− (k + 1)ε > 1− A− 1

A+ 1
=

2

A+ 1

that is
1

1− (k + 1)ε
<
A+ 1

2
implies

2

1− (k + 1)ε
< A+ 1

and so
2

(1− (k + 1)ε)(A+ 1)
< 1

The proof is complete. �
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Theorem 2.13. If A > 1 and B > 1, then the unique positive equilibrium (x̄, ȳ) =

(A+ 1, B + 1) of system (2.0.1) is locally asymptotically stable.

Proof. System (2.0.1) can be formulated as a system of first order recurrence equa-

tions as follows:

w1
n = xn, w

2
n = xn−1, ..., w

(k+1)
n = xn−k

v1
n = yn, v

2
n = yn−1, ..., v

(k+1)
n = yn−k

(2.4.17)

Let Zn = (w1
n, w

2
n, ..., w

(k+1)
n , v1

n, v
2
n, ..., v

(k+1)
n )T . Then the linearized system of system

(2.0.1) associated with (2.4.17) about the equilibrium point (x̄, ȳ) = (A+ 1, B + 1)

is

Zn+1 = JZn

where

Zn+1 =



w
(1)
n+1

w
(2)
n+1
...

w
(k+1)
n+1

v
(1)
n+1

v
(2)
n+1
...

v
(k+1)
n+1


=



A+ v1
n

v
(k+1)
n

w
(1)
n

...

w
(k)
n

B + w1
n

w
(k+1)
n

v
(1)
n

...

v
(k)
n


and J is the Jacobian matrix.

J(2k+2)×(2k+2) =
(
D
w

(1)
n
Zn+1 ... D

w
(k+1)
n

Zn+1 D
v

(1)
n
Zn+1 ... D

v
(k+1)
n

Zn+1

)
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so the Jacobian matrix will be of the following form

J(2k+2)×(2k+2) =



0 0 · · · 0 0 1
B+1

0 · · · 0 −1
B+1

1 0 · · · 0 0 0 0 · · · 0 0

0 1 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 1 0 0 0 · · · 0 0
1

A+1
0 · · · 0 −1

A+1
0 0 · · · 0 0

0 0 · · · 0 0 1 0 · · · 0 0

0 0 · · · 0 0 0 1 · · · 0 0
...

...
. . .

...
...

...
... · · · ...

...

0 0 · · · 0 0 0 0 · · · 1 0


Let λ1, λ2, ..., λ2k+2 be the eigenvalues of J . Define D = diag(d1, d2, ..., d2k+2) be a

diagonal matrix such that

d1 = dk+2 = 1, dm = dk+1+m = 1−mε, m = 2, 3, ..., k + 1

choose ε > 0 such that 0 < ε < min{ A−1
(A+1)(k+1)

, B−1
(B+1)(k+1)

}. Now,

D(2k+2)×(2k+2) =



d1 0 0 · · · 0

0 d2 0 · · · 0

0 0 d3 · · · 0
...

...
. . .

... 0

0 0 0 · · · d2k+2



=



1 0 · · · 0 0 0 0 · · · 0 0

0 1− 2ε · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 0 1− (k + 1)ε 0 0 · · · 0 0

0 0 · · · 0 0 1 0 · · · 0 0

0 0 · · · 0 0 0 1− 2ε · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 0 0 0 0 · · · 0 1− (k + 1)ε


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so for all m = 2, 3, ..., k + 1, by Lemma (2.12)

1−mε ≥ 1− (k + 1)ε > 1− (k + 1)(A− 1)

(k + 1)(A+ 1)
=
A+ 1− A+ 1

A+ 1
=

2

A+ 1
> 0

so for all m, 1−mε > 0, hence D is invertible. Now,

DJD−1
(2k+2)×(2k+2) =



0 0 · · · 0 0 1
B+1

d1

dk+2
0 · · · 0 −1

B+1
d1

d2k+2

d2

d1
0 · · · 0 0 0 0 · · · 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 · · · dk+1

dk
0 0 0 · · · 0 0

1
A+1

dk+2

d1
0 · · · 0 −1

A+1

dk+2

dk+1
0 0 · · · 0 0

0 0 · · · 0 0 dk+3

dk+2
0 · · · 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 · · · 0 0 0 0 · · · d2k+2

d2k+1
0



Now, we need to show that the sum of the absolute value of entries of every row is

much less than one, on the way to find the infinite norm of DJD−1. Since ε > 0 so

1−mε > 1− (m+ 1)ε, that is, dm > dm+1, for all m. So

d2

d1

< 1,
d3

d2

< 1, ...,
d2k+2

d2k+1

< 1

For 1
B+1

d1

dk+2
+ 1

B+1
d1

d2k+2
= 1

B+1
+ 1

(1−(k+1)ε)(B+1)

= 1
B+1

+ 1
(1−(k+1)ε)(B+1)

< 1
1−(k+1)ε

1
B+1

+ 1
(1−(k+1)ε) 1

(
B+1)

< 2
(1−(k+1)ε)(B+1)

< 1

For 1
A+1

dk+2

d1
+ 1

A+1

dk+2

dk+1
= 1

A+1
+ 1

(1−(k+1)ε)(A+1)

< 1
1−(k+1)ε

1
A+1

+ 1
(1−(k+1)ε) 1

(
A+1)

< 2
(1−(k+1)ε)(A+1)

< 1
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Since J has the same eigenvalue as DJD−1. Then,

ρ(J) = max{| λi |} ≤ ‖DJD−1‖∞

but

||DJD−1||∞ =

{
1

B+1
+ 1

(1−(1+k)ε)(B+1)
, d2
d1
, d3
d2
, ..., dk+1

dk
,

1
A+1

+ 1
(1−(1+k)ε)(A+1)

}
< 1.

So the modulus of each eigenvalue of J is much less than one. Hence, the unique

equilibrium point (x̄, ȳ) = (A+ 1, B + 1) of system (2.0.1) is locally asymptotically

stable. �

Theorem 2.14. If A > 1 and B > 1, then the unique positive equilibrium (x̄, ȳ) =

(A+ 1, B + 1) of system (2.0.1) is globally asymptotically stable.

Proof. Using theorem (2.13) we conclude that the equilibrium (x̄, ȳ) = (A+1, B+1)

of system (2.0.1) is locally asymptotically stable, but Theorem (2.11) implies that

this equilibrium is a global attractor. Thus, the unique positive equilibrium (x̄, ȳ) =

(A+ 1, B + 1) of system (2.0.1) is globally asymptotically stable. �
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2.5 Numerical Examples

In this section, we give some numerical examples that represent different cases of

dynamical behavior of solutions of (2.0.1) the use of MATLAB to illustrate the

results we had in the previous sections.

Example 2.1. Consider the following system of two difference equations:

xn+1 = A+
yn
yn−5

, yn+1 = B +
xn
xn−5

, n = 0, 1, · · · (2.5.1)

with A = 0.2, B = 0.8, and the initial conditions x−5 = 0.7, x−4 = 9.1, x−3 =

0.2, x−2 = 9.2, x−1 = 0.3, x0 = 10, y−5 = 0.4, y−4 = 10.3, y−3 = 0.5, y−2 = 9.3, y−1 =

0.3, y0 = 11.2. Then the solution of system (2.5.1) is unbounded since 0 < A < 1

and 0 < B < 1 and the initial conditions in Theorem (2.8) are satisfying. The

unique positive equilibrium point (x̄, ȳ) = (1.2, 1.8) is not globally asymptotically

stable (see Figure 1.1, Theorem (2.8)).

Fig. 2.1: The graph of a solution of system (2.5.1) with A = 0.2 and B = 0.8
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Example 2.2. Consider system (2.5.1) with A = 4, B = 2.5, and the initial con-

ditions x−5 = 2.5, x−4 = 3.7, x−3 = 1.5, x−2 = 0.7, x−1 = 0.3, x0 = 0.4, y−5 =

2.2, y−4 = 3.3, y−3 = 1.2, y−2 = 0.3, y−1 = 0.2, y0 = 0.9. Since A > 1 and B > 1,

the solution of system (2.5.1) is bounded and persists (see Theorem (2.9)), and the

unique positive equilibrium (x̄, ȳ) = (5, 3.5) is globally asymptotically stable (see

Figure 1.2, Theorem (2.14)).

Fig. 2.2: The graph of a solution of system (2.5.1) with A = 4 and B = 2.5
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Example 2.3. Consider the following system of two difference equations:

xn+1 = A+
yn
yn−4

, yn+1 = B +
xn
xn−4

, n = 0, 1, · · · (2.5.2)

with A = 3, B = 4, and the initial conditions x−4 = 0.8, x−3 = 1.3, x−2 = 1.2, x−1 =

2.1, x0 = 1.2, y−4 = 1.5, y−3 = 2.3, y−2 = 0.3, y−1 = 0.5, y0 = 0.7. Then the solution

of system (2.5.2) Then the unique positive equilibrium (x̄, ȳ) = (4, 5) is globally

asymptotically stable since A > 1 and B > 1 (see Theorem (2.14)), and the solution

of system (2.5.2)is bounded and persists (see Figure 1.3, Theorem (2.9)). In this

example k = 4 is even, while in Example 1.2, k = 5 is odd, but in both cases we

have the same conclusion.

Fig. 2.3: The graph of a solution of system (2.5.2) with A = 3 and B = 4



3. DYNAMICS OF THE SYSTEM

XN+1 = A+ XN

YN−K
, YN+1 = B + YN

XN−K

In this chapter, we introduce the dynamical system:

xn+1 = A+
xn
yn−k

, yn+1 = B +
yn
xn−k

, n = 0, 1, · · · (3.0.1)

with parameters A > 0 and B > 0, the initial conditions xi, yi are arbitrary positive

numbers for i = −k,−k + 1, · · · , 0 and k ∈ Z+ . We study the dynamical behavior

of this system in the cases: case (1): 0 < A < 1, 0 < B < 1 case (2): A > 1,

B > 1. Moreover we also investigate the behavior of the positive solutions of (3.0.1)

using the semi-cycle analysis method. Finally, we give some numerical examples

that illustrate the results in this chapter.

System (3.0.1) has the unique positive equilibrium (x̄, ȳ) = (AB−1
B−1

, AB−1
A−1

) since

x̄ = A+ x̄
ȳ
, ȳ = B + ȳ

x̄
implies that

x̄ȳ = Aȳ + x̄, x̄ȳ = Bx̄+ ȳ

so

Aȳ + x̄ = Bx̄+ ȳ

Aȳ − ȳ = Bx̄− x̄

(A− 1)ȳ = (B − 1)x̄

hence, we find

ȳ =
B − 1

A− 1
x̄

so
x̄

ȳ
=
A− 1

B − 1
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and

x̄ = A+
x̄

ȳ
= A+

A− 1

B − 1
=
AB − 1

B − 1
,

ȳ = B +
ȳ

x̄
= B +

B − 1

A− 1
=
AB − 1

A− 1

(x̄, ȳ) = (
AB − 1

B − 1
,
AB − 1

A− 1
).

3.1 Semi-cycle Analysis I

In this section, we examine the behavior of positive solutions of system (3.0.1) via

semi-cycle analysis method.

Theorem 3.1. Let {xn, yn}∞n=−k be a solution of system (3.0.1). Then, either this

solution is non-oscillatory solution or it oscillates about the equilibrium (x̄, ȳ) =

(AB−1
B−1

, AB−1
A−1

) with semi-cycles such that if there exists a semi-cycle with at least k

terms, then every semi-cycle after that has at least k + 1 terms.

Proof. Assume {xn, yn}∞n=−k is a solution of system (3.0.1), and there exists an

integer n0 ≥ 0 such that (xn0 , yn0) is the last term of a semi-cycle that has at least

k terms. Then, either

..., xn0−k+1, ..., xn0−1, xn0 <
AB − 1

B − 1
≤ xn0+1

and

..., yn0−k+1, ..., yn0−1, yn0 <
AB − 1

A− 1
≤ yn0+1

or

..., xn0−k+1, ..., xn0−1, xn0 ≥
AB − 1

B − 1
> xn0+1

and

..., yn0−k+1, ..., yn0−1, yn0 ≥
AB − 1

A− 1
> yn0+1
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• Case 1: If ..., xn0−k+1, ..., xn0−1, xn0 <
AB−1
B−1

≤ xn0+1 and ..., yn0−k+1, ..., yn0−1, yn0 <
AB−1
A−1

≤ yn0+1, then

xn0+2 = A+
xn0+1

yn0−k+1

> A+
AB − 1

B − 1

A− 1

AB − 1
= A+

A− 1

B − 1
=
AB − 1

B − 1

and

yn0+2 = B +
yn0+1

xn0−k+1

> B +
AB − 1

A− 1

B − 1

AB − 1
= B +

B − 1

A− 1
=
AB − 1

A− 1

xn0+3 = A+
xn0+2

yn0−k+2

> A+
AB − 1

B − 1

A− 1

AB − 1
= A+

A− 1

B − 1
=
AB − 1

B − 1

and

yn0+3 = B +
yn0+2

xn0−k+2

> B +
AB − 1

A− 1

B − 1

AB − 1
= B +

B − 1

A− 1
=
AB − 1

A− 1

...

xn0+k = A+
xn0+k−1

yn0−1

> A+
AB − 1

B − 1

A− 1

AB − 1
= A+

A− 1

B − 1
=
AB − 1

B − 1

and

yn0+k = B +
yn0+k−1

xn0−1

> B +
AB − 1

A− 1

B − 1

AB − 1
= B +

B − 1

A− 1
=
AB − 1

A− 1

xn0+k+1 = A+
xn0+k

yn0

> A+
AB − 1

B − 1

A− 1

AB − 1
= A+

A− 1

B − 1
=
AB − 1

B − 1

and

yn0+k+1 = B +
yn0+k

xn0

> B +
AB − 1

A− 1

B − 1

AB − 1
= B +

B − 1

A− 1
=
AB − 1

A− 1
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hence, the semi-cycle beginning with (xn0+1, yn0+1) has at least k + 1 terms.

Now, assume the semi-cycle which begins with (xn0+1, yn0+1) has exactly k+ 1

terms, then the following semi-cycle will begin with (xn0+k+2, yn0+k+2) such

that

xn0+1, xn0+2, ..., xn0+k+1 ≥
AB − 1

B − 1
> xn0+k+2

and

yn0+1, yn0+2, ..., yn0+k+1 ≥
AB − 1

A− 1
> yn0+k+2,

then for i = 1, 2, 3, .., k

xn0+k+2+i = A+
xn0+k+1+i

yn0+1+i

< A+
AB − 1

B − 1

A− 1

AB − 1
= A+

A− 1

B − 1
=
AB − 1

B − 1

and

yn0+k+2+i = B +
yn0+k+1+i

xn0+1+i

< B +
AB − 1

A− 1

B − 1

AB − 1
= B +

B − 1

A− 1
=
AB − 1

A− 1

so, each semi-cycle after this point must have at least k + 1 terms.

• Case 2: If ..., xn0−k+1, ..., xn0−1, xn0 ≥ AB−1
B−1

> xn0+1 and ..., yn0−k+1, ..., yn0−1, yn0 ≥
AB−1
A−1

> yn0+1, then for all i = 2, 3, ..., k + 1

xn0+i = A+
xn0−1+i

yn0−k−1+i

< A+
AB − 1

B − 1

A− 1

AB − 1
= A+

A− 1

B − 1
=
AB − 1

B − 1

and

yn0+i = B +
yn0−1+i

xn0−k−1+i

< B +
AB − 1

A− 1

B − 1

AB − 1
= B +

B − 1

A− 1
=
AB − 1

A− 1
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hence, the semi-cycle beginning with (xn0+1, yn0+1) has at least k + 1 terms.

Now, assume this semi-cycle has exactly k+ 1 terms, then the following semi-

cycle will begin with (xn0+k+2, yn0+k+2) such that

xn0+1, xn0+2, ..., xn0+k+1 <
AB − 1

B − 1
≤ xn0+k+2

and

yn0+1, yn0+2, ..., yn0+k+1 <
AB − 1

A− 1
≤ yn0+k+2

then for i = 1, 2, ..., k

xn0+k+2+i = A+
xn0+k+1+i

yn0+1+i

> A+
AB − 1

B − 1

A− 1

AB − 1
= A+

A− 1

B − 1
=
AB − 1

B − 1

and

yn0+k+2+i = B +
yn0+k+1+i

xn0+1+i

> B +
AB − 1

A− 1

B − 1

AB − 1
= B +

B − 1

A− 1
=
AB − 1

A− 1

so, every semi-cycle after this point must have at least k+ 1 terms. The proof

is complete.

�
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3.2 The Case 0 < A < 1 and 0 < B < 1

In this section, we study the asymptotic behavior of the positive solutions of system

(3.0.1) when 0 < A < 1 and 0 < B < 1. System (3.0.1) can have unbounded

solutions given certain conditions.

Theorem 3.2. Suppose that 0 < A < 1 and 0 < B < 1 . Let {xn, yn} be an

arbitrary positive solution of (3.0.1). Then the following statements are true:

(a) If x0

y−k
< 1−A, y0

x−k
> 1

1−A −B and y−k+1, ..., y0 >
1

1−A , x−k+1, ..., x0 < 1. Then

xn < 1, yn >
1

1−A and xn → A, yn →∞

(b) If y0

x−k
< 1− B, x0

y−k
> 1

1−B − A and y−k+1, ..., y0 < 1 x−k+1, ..., x0 >
1

1−B . Then

yn < 1, xn >
1

1−B and xn →∞, yn → B

Proof. • If x0

y−k
< 1−A, y0

x−k
> 1

1−A−B and y−k+1, ..., y0 >
1

1−A , x−k+1, ..., x0 < 1.

Then

x1 = A+
x0

y−k
< A+ 1− A = 1

y1 = B +
y0

x−k
> B +

1

1− A
−B =

1

1− A

x2 = A+
x1

y−k+1

< A+
1

y−k+1

< A+ 1− A = 1

y2 = B +
y1

x−k+1

> B +
1

1− A
1

x−k+1

> B +
1

1− A
>

1

1− A

x3 = A+
x2

y−k+2

< A+
1

y−k+2

< A+ 1− A = 1

y3 = B +
y2

x−k+2

> B +
1

1− A
1

x−k+2

> B +
1

1− A
>

1

1− A

xk+1 = A+
xk
y0

< A+
1

y0

< A+ 1− A = 1

yk+1 = B +
yk
x0

> B +
1

1− A
1

x0

> B +
1

1− A
>

1

1− A
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...

yn+1 = B +
yn
xn−k

> B + yn

implies lim
n→∞

yn =∞, lim
n→∞

xn = A.

• If y0

x−k
< 1−B, x0

y−k
> 1

1−B −A and y−k+1, ..., y0 < 1 x−k+1, ..., x0 >
1

1−B . Then

x1 = A+
x0

y−k
> A+

1

1−B
− A >

1

1−B

y1 = B +
y0

x−k
< B + 1−B = 1

x2 = A+
x1

y−k+1

> A+
1

1−B
1

y−k+1

> A+
1

1−B
>

1

1−B

y2 = B +
y1

x−k+1

< B +
1

x−k+1

< B + 1−B = 1

x3 = A+
x2

y−k+2

> A+
1

1−B
1

y−k+2

> A+
1

1−B
>

1

1−B

y3 = B +
y2

x−k+2

< B +
1

x−k+2

< B + 1−B = 1

xk+1 = A+
xk
y0

< A+
1

1−B
1

y0

> A+
1

1−B
>

1

1−B

yk+1 = B +
yk
x0

< B +
1

x0

< B + 1−B = 1

...

xn+1 = A+
xn
yn−k

> A+ xn

implies lim
n→∞

xn =∞, lim
n→∞

yn = B.

which completes the proof.

�
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3.3 The Case A > 1 and B > 1

In this section, we study the boundedness and persistence of the positive solutions

of system (3.0.1) when A > 1 and B > 1, we additionally show that if A > 1

and B > 1 then the unique positive equilibrium of (3.0.1) is globally asymptotically

stable.

Theorem 3.3. [17] Suppose that A > 1, B > 1. Then each positive solution {xn, yn}
of (3.0.1) is bounded and persists. In particular, for i = k + 2, k + 3, ..., 3k + 3 and

l ≥ 0, every positive solution of (3.0.1) satisfies

A ≤ xk+l ≤ (
1

B
)l

(
xk+1 −

AB

B − 1

)
+

AB

B − 1
,

B ≤ yk+l ≤ (
1

A
)l

(
yk+1 −

AB

A− 1

)
+

AB

A− 1
,

n ≥ k + 1.

(3.3.1)

Proof. Let {xn, yn} be arbitrary positive solution of (3.0.1). From (3.0.1) it is obvi-

ous that

A ≤ xn, B ≤ yn, n ≥ 1 (3.3.2)

Now, using (3.0.1)and (3.3.2) we get that for all n ≥ 2

xn = A+
xn−1

yn−k−1

≤ A+
1

B
xn−1,

yn = B +
yn−1

xn−k−1

≤ B +
1

A
yn−1,

n ≥ k + 1.

(3.3.3)

Let vn, wn be the solution of the system

vn+1 = A+
1

B
vn, wn+1 = B +

1

A
wn, for all n ≥ k + 1. (3.3.4)
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such that

vi = xi, wi = yi, i = −k,−k + 1, ..., 0, 1, ..., k + 1 (3.3.5)

now, we use induction to prove that

xn ≤ vn, yn ≤ wn, n ≥ k + 2. (3.3.6)

Suppose that (3.3.6) is true for n = m ≥ k + 2. Then from (3.3.3) we get

xm+1 ≤ A+
1

B
xm ≤ A+

1

B
vm = vm+1,

ym+1 ≤ B +
1

A
ym ≤ B +

1

A
wm = wm+1.

Therefore (3.3.6) is true. For simplicity, let a = 1
B
, b = A, d = B and c = 1

A
. Then

(3.3.4) becomes

vn+1 = avn + b, wn+1 = cwn + d, n ≥ k

implies that

vk+l = alvk+1 +
1− al

1− a
b, wk+l = clwk+1 +

1− cl

1− c
d

since A > 1, B > 1, a = 1
B
, b = A, d = B and c = 1

A
. Then for i = k+2, k+3, ..., 3k+3

and l ≥ 0 implies

A ≤ xk+l ≤ (
1

B
)l

(
xk+1 −

AB

B − 1

)
+

AB

B − 1
,

B ≤ yk+l ≤ (
1

A
)l

(
yk+1 −

AB

A− 1

)
+

AB

A− 1
,

n ≥ k + 1.

(3.3.7)

The proof is complete. �
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Theorem 3.4. Suppose that A > 1, B > 1. Then the positive equilibrium

(x̄, ȳ) =

(
AB − 1

B − 1
,
AB − 1

A− 1

)

of (2.0.1) is locally asymptotically stable.

Proof. System (3.0.1) may be formulated as a system of first order recurrence equa-

tions as follows:

w1
n = xn, w

2
n = xn−1, ..., w

(k+1)
n = xn−k

v1
n = yn, v

2
n = yn−1, ..., v

(k+1)
n = yn−k

(3.3.8)

Let Zn = (w1
n, w

2
n, ..., w

(k+1)
n , v1

n, v
2
n, ..., v

(k+1)
n )T . Then the linearized system of system

(3.0.1) associated with (3.3.8) about the equilibrium point (x̄, ȳ) = (AB−1
B−1

, AB−1
A−1

) is

Zn+1 = JZn

where

Zn+1 =



w
(1)
n+1

w
(2)
n+1
...

w
(k+1)
n+1

v
(1)
n+1

v
(2)
n+1
...

v
(k+1)
n+1


=



A+ xn
yn−k

xn
...

xn−k+1

xn−k

B + yn
xn−k

yn
...

yn−k+1

yn−k


and J is the Jacobian matrix.

J(2k+2)×(2k+2) =
(
D
w

(1)
n
Zn+1 ... D

w
(k+1)
n

Zn+1 D
v

(1)
n
Zn+1 ... D

v
(k+1)
n

Zn+1

)
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so the Jacobian matrix will be of the following form

J(2k+2)×(2k+2) =



1
ȳ
· · · 0 0 0 · · · 0 −x̄

ȳ2

1 · · · 0 0 0 · · · 0 0
. . .

0 · · · 1 0 0 · · · 0 0

0 · · · 0 −ȳ
x̄2

1
x̄
· · · 0 0

0 · · · 0 0 1 · · · 0 0
. . .

0 · · · 0 0 0 · · · 1 0


Let λ1, λ2, ..., λ2k+2 be the eigenvalues of J . Define D = diag(d1, d2, ..., d2k+2) be a

diagonal matrix such that d1 = dk+2 = 1, d1+k = dm+2+k = 1 −mε, 1 ≤ m ≤ k

and ε = min

{
1
k
, 1
k

(
1− x̄

ȳ2−ȳ

)
, 1
k

(
1− ȳ

x̄2−x̄

)}
. Clearly, D is invertible. Computing

DJD−1, we obtain

DJD−1 =



1
ȳ
d1d
−1
1 · · · 0 0 0 · · · 0 −x̄

ȳ2 d1d
−1
2k+2

d2d
−1
1 · · · 0 0 0 · · · 0 0

. . .

0 · · · dk+1d
−1
k 0 0 · · · 0 0

0 · · · 0 −ȳ
x̄2 dk+2d

−1
k+1

1
x̄
dk+2d

−1
k+2 · · · 0 0

0 · · · 0 0 dk+3d
−1
k+2 · · · 0 0

. . .

0 · · · 0 0 0 · · · d2k+2d
−1
2k+1 0


The following two chains of inequalities

dk+1 > dk > · · · > d2 > 0, d2k+2 > d2k+1 > · · · > dk+3 > 0

imply that

d2d
−1
1 < 1, d3d

−1
2 < 1, · · · , dk+1d

−1
k < 1,

dk+3d
−1
k+2 < 1, dk+4d

−1
k+3 < 1, · · · , d2k+2d

−1
2k+1 < 1.

Furthermore,
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d1

ȳ
d−1

1 + x̄
ȳ2d1d

−1
2k+2 = 1

ȳ
+ x̄

ȳ2d
−1
2k+2

= 1
ȳ

+ x̄
ȳ2(1−kε)

< 1
ȳ

+ x̄
ȳ2(1−k( 1

k
(1− x̄

ȳ2−ȳ
)))

= 1
ȳ

+ x̄
ȳ2( x̄

ȳ2−ȳ
)

= 1
ȳ

+ ȳ2−ȳ
ȳ2

= ȳ2

ȳ2

= 1

dk+2

x̄
d−1
k+2 +

ȳ

x̄2
dk+2d

−1
k+2 =

1

x̄
+

ȳ

x̄2
d−1
k+1 =

1

x̄
+

ȳ

x̄2(1− kε)
< 1.

It is well known that J has the same eigenvalues as DJD−1, we obtain that

ρ(J) = max{| λi |} ≤ ‖DJD−1‖∞

but

||DJD−1||∞ =

{
d1

ȳ
d−1

1 + x̄
ȳ2d1d

−1
2k+2, dk+1d

−1
k , dk+3d

−1
k+2, ..., d2k+2d

−1
2k+1, d2d

−1
1 ,

dk+2

x̄
d−1
k+2 + ȳ

x̄2dk+2d
−1
k+1

}
< 1.

So the modulus of every eigenvalue of J is less than one. Hence, the unique equi-

librium point (x̄, ȳ) =
(
AB−1
B−1

, AB−1
A−1

)
of system (3.0.1) is locally asymptotically

stable. �

Theorem 3.5. [17] If A > 1 and B > 1, then every positive solution of system

(3.0.1) converges to the equilibrium (x̄, ȳ) = (AB−1
B−1

, AB−1
A−1

) as n→∞.

Proof. From (3.3.1)we have

L1 = lim
n→∞

supxn, l1 lim
n→∞

inf xn,

L2 = lim
n→∞

sup yn, l2 = lim
n→∞

inf yn,
(3.3.9)

where li, Li ∈ (0,∞), i = 1, 2. Now, system (3.0.1) implies that

L1 ≤ A+
L1

l2
, L2 ≤ B +

L2

l1
,
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l1 ≥ A+
l1
L2

, l2 ≥ B +
l2
L1

.

Which can be written as

L1l2 ≤ Al2 + L1, L2l1 ≤ Bl1 + L2,

l1L2 ≥ AL2 + l1, l2L1 ≥ BL1 + l2.

implies

BL1 + l2 ≤ l2L1 ≤ Al2 + L1, AL2 + l1 ≤ l1L2 ≤ Bl1 + L2

From which we have

L1(B − 1) ≤ l2(A− 1), L2(A− 1) ≤ l1(B − 1) (3.3.10)

Since A > 1 and B > 1 and from (3.3.10) imply that L1L2 ≤ l1l2 from which it

follows that

L1L2 = l1l2 (3.3.11)

We claim that

L1 = l1, L2 = l2. (3.3.12)

Suppose on contrary that l1 < L1. Then from (3.3.11)we have L1L2 = l1l2 < L1l2

and so L2 < l2, which is a contradiction. So L1 = l1. Similarly, we can prove that

L2 = l2. Therefore, (3.3.12) are true. From (3.0.1)and (3.3.12) we conclude that

lim
n→∞

xn = x and lim
n→∞

yn = y

where (x, y) is the unique positive equilibrium of (3.0.1). This completes the proof

of the theorem.

�

Theorem 3.6. If A > 1 and B > 1, then the unique positive equilibrium (x̄, ȳ) =

(AB−1
B−1

, AB−1
A−1

) of system (3.0.1) is globally asymptotically stable.

Proof. Using theorem (3.4) we conclude that the equilibrium (x̄, ȳ) = (AB−1
B−1

, AB−1
A−1

)

of system (3.0.1) is locally asymptotically stable, but Theorem (3.5) implies that

this equilibrium is a global attractor. Thus, the unique positive equilibrium (x̄, ȳ) =

(AB−1
B−1

, AB−1
A−1

) of system (3.0.1) is globally asymptotically stable. �
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3.4 Numerical Examples

In this section, we give some numerical examples that represent different cases of

dynamical behavior of solutions of (2.0.1) the use of MATLAB to illustrate the

results we had in the previous sections.

Example 3.1. Consider the following system of two difference equations:

xn+1 = A+
xn
yn−5

, yn+1 = B +
yn
xn−5

, n = 0, 1, · · · (3.4.1)

with A = 0.3, B = 0.5, and the initial conditions x−5 = 0.7, x−4 = 9.1, x−3 =

0.5, x−2 = 9.2, x−1 = 0.3, x0 = 10, y−5 = 0.3, y−4 = 11.3, y−3 = 0.5, y−2 = 9.3, y−1 =

0.2, y0 = 11.9. Then the solution of system (3.4.1) is unbounded since 0 < A < 1

and 0 < B < 1 and the initial conditions in Theorem (3.2) are satisfying and the

unique positive equilibrium point (x̄, ȳ) = (1.7, 1.21) is not globally asymptotically

stable (see Figure 1.1, Theorem (3.2)).
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Fig. 3.1: The graph of a solution of system (3.4.1) with A = 0.3 and B = 0.5
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Example 3.2. Consider system (3.4.1) with A = 4, B = 2.5, and the initial con-

ditions x−5 = 3.5, x−4 = 4.7, x−3 = 2.5, x−2 = 0.9, x−1 = 0.3, x0 = 0.5, y−5 =

3.3, y−4 = 4.4, y−3 = 2.2, y−2 = 0.4, y−1 = 0.5, y0 = 0.7. Since A > 1 and B > 1,

the solution of system (3.4.1) is bounded and persists (see Theorem (3.3)), and the

unique positive equilibrium point (x̄, ȳ) = (6, 3) is globally asymptotically stable

(see Figure 1.2, Theorem (3.6)).

Fig. 3.2: The graph of a solution of system (3.4.1) with A = 4 and B = 2.5
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Example 3.3. Consider the following system of two difference equations:

xn+1 = A+
xn
yn−4

, yn+1 = B +
yn
xn−4

, n = 0, 1, · · · (3.4.2)

with A = 3, B = 4, and the initial conditions x−4 = 0.9, x−3 = 2.5, x−2 = 2, x−1 =

1.1, x0 = 0.7, y−4 = 3.3, y−3 = 2, y−2 = 0.4, y−1 = 0.3, y0 = 0.9. Then the unique

positive equilibrium point (x̄, ȳ) = (3.7, 5.5) is globally asymptotically stable since

A > 1 and B > 1 (see Theorem (3.6)), and the solution of system (3.4.2)is bounded

and persists (see Figure 1.3, Theorem (3.3)). In this example k = 4 is even, while

in Example 1.2, k = 5 is odd, but in both cases we have the same conclusion.

Fig. 3.3: The graph of a solution of system (3.4.2) with A = 3 and B = 4



CONCLUSION

In this research, we solved an open problem proposed in [1] by Abualrob,

S.,Aloqeili, M. We expanded the work on system (1.1.11) to a system with different

parameters and investigated its dynamical behavior. We also introduced the sym-

metrical system of two rational difference equations (3.0.1) and studied the global

behavior of its positive solutions.
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FUTURE WORK

Our research can be expanded into more complicated related systems. The

study of systems (3.0.1), (1.1.1) and (1.1.6) can be extended to systems with distinct

parameters. Now, we will give some open problems that can be investigated next.

Problem 1. Investigate the dynamical behavior of the system of two difference

equations

xn+1 = A+
yn
xn−k

, yn+1 = B +
xn
yn−k

, n = 0, 1, · · · (3.4.3)

with parameters A > 0 and B > 0, the initial conditions xi, yi are arbitrary positive

numbers for i = −k,−k + 1, · · · , 0 and k ∈ Z+ .

Problem 2. Investigate the dynamical behavior of the system

xn+1 = A+
yn−k
xn

, yn+1 = B +
xn−k
yn

, n = 0, 1, · · · (3.4.4)

with parameters A > 0 and B > 0, the initial conditions xi, yi are arbitrary positive

numbers for i = −k,−k + 1, · · · , 0 and k ∈ Z+ .

Problem 3. Investigate the dynamical behavior of the system of two nonlinear

difference equations

xn+1 = A+
ypn−k
yqn

, yn+1 = B +
xpn−k
xqn

, n = 0, 1, · · · (3.4.5)

with parameters A > 0 and B > 0, the initial conditions xi, yi are arbitrary positive

numbers for i = −k,−k + 1, · · · , 0 and k ∈ Z+ .

Problem 4. Investigate the dynamical behavior of the system

xn+1 = A+
xn−k
yn

, yn+1 = B +
yn−k
xn

, n = 0, 1, · · · (3.4.6)

let A > 1 and B < 1 or A < 1 and B > 1, the initial conditions xi, yi are arbitrary

positive numbers for i = −k,−k + 1, · · · , 0 and k ∈ Z+.
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